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Abstract

We present Glimmer, a new multilevel visualization algorithm for multidimen-

sional scaling designed to exploit modern graphics processing unit (GPU) hard-

ware. We also present GPU-SF, a parallel, force-based subsystem used by Glim-

mer. Glimmer organizes input into a hierarchy of levels and recursively applies

GPU-SF to combine and refine the levels. The multilevel nature of the algorithm

helps avoid local minima while the GPU parallelism improves speed of computa-

tion. We propose a robust termination condition for GPU-SF based on a filtered

approximation of the normalized stress function. We demonstrate the benefits of

Glimmer in terms of speed, normalized stress, and visual quality against several

previous algorithms for a range of synthetic and real benchmark datasets. We show

that the performance of Glimmer on GPUs is substantially faster than a CPU imple-

mentation of the same algorithm. We also propose a novel texture paging strategy

called distance paging for working with precomputed distance matrices too large

to fit in texture memory.
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Chapter 1

Introduction

Multidimensional scaling, or MDS, is a technique for dimensionality reduction,

where data in a measured high-dimensional space is mapped into some lower-

dimensional target space while minimizing spatial distortion. MDS is used when

the inherent dimensionality of the dataset is conjectured to be smaller than dimen-

sionality of the measurements. When dimensionality reduction is commonly used

for information visualization applications, the low-dimensional target space is 2D

or 3D and the points in that space are drawn directly, in hopes of helping people

understand dataset structure in terms of clusters or other proximity relationships of

interest [6]. MDS is only one of many dimensionaly reduction algorithms. Others

include Isomap [28], Locally Linear Embedding [26] (LLE), and Gaussian Process

Latent Variable Models [18].

In MDS, the goal is to find coordinates for N points in a low-dimensional space,

where the low-dimensional distance di j between points i and j is as close as possi-

ble to the corresponding high-dimensional distance, or dissimilarity, δi j. Input can

consist of high-dimensional points, with δi j computed from coordinates, or of an

N×N distance matrix, ∆, allowing an arbitrarily complex distance metric.

As an example of where MDS produces meaningful results, consider a dataset

from the Wisconsin Breast Cancer Database1. It contains 683 points representing

tumors and 9 measurements about each tumor such as cell uniformity and clump

1Taken from the UCI ML Repository: www.ics.uci.edu/˜mlearn/MLSummary.html

www.ics.uci.edu/~mlearn/MLSummary.html
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Figure 1.1: MDS layouts may reveal useful structures, as in the tumor dataset
from the Wisconsin Breast Cancer Database where blue represents benign and red
represents malignant. In typical MDS usage, the color labels do not exist and the
proximity relationships such as clusters are used to discern classification.

thickness. We say that this dataset is 9-dimensional and the distance δi j between

two tumors i and j is the Euclidean distance between the 9-dimensional points

constructed from the measurements of each tumor. Figure 1.1a shows the resulting

visualization of this dataset after using MDS to map the data from 9 to 2 dimen-

sions. The figure shows that points (tumors) either belong to a tightly clustered

low-variance group or are part of the more spread out, higher-variance cluster of

points. We color points based on ground-truth labels to show that the blue points

are benign tumors and the red points are malignant tumors. In this instance, there

is a strong correlation between the spatial strctures observed after applying MDS

and a latent feature of the data.

Alternatively, MDS may result in the loss or distortion of structure. For exam-

ple, consider a three dimensional dataset constructed by regularly sampling points

from the surface of a sphere. There is no embedding of this dataset in two di-

mensions without some distortion because the sphere’s intrinsic dimensionality is

three.

MDS algorithms work by minimizing an objective function based on the dis-

crepancy of high-dimensional and embedding distances. A standard stress error
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metric is the normalized stress metric:

stress(D,∆)2 =
∑i j (di j −δi j)

2

∑i j δ2
i j

(1.1)

which has a significant cost of O(N2) to compute for the N points of the dataset.

If the embedded distances match the original distances of the data, then stress =

0. Stress becomes larger as the spatial distortion between the embedding and the

original data increases.

MDS algorithms vary in precisely what form the stress function takes and in

how they minimize the stress function. Some are approximate while others are

exact, some are iterative while others are completely analytical. Such diversity in

algorithms leads to diversity in the quality of the results and the speed at which

they are computed. Section 2 gives a brief overview of various relevant classes of

existing MDS algorithms and their underlying characteristics.

One class of MDS algorithms that has had significant influence in information

visualization is the class of iterative, force directed algorithms. In such algorithms,

data points are modeled as particles in space attached to other particles with springs

with an ideal length proportional to the original distance δ. The algorithm com-

putes a simulation by integrating forces until the physical system settles down into

a state of minimal energy. At this point computation halts and the final positions of

the particles are assigned the resulting coordinates of the data. Naı̈ve implementa-

tions of such algorithms can be computationally expensive and prone to converge

to local minima.

We present three substantial improvements to the iterative class of MDS algo-

rithms based on simulated forces. First, we improve algorithm speed by exploiting

the modern PC graphics processing unit (GPU) as a computational engine. Second,

we introduce a cheap and reliable linear-time termination condition based on the

convergence of an approximation of the normalized stress function. Finally, we
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devise a simple multilevel strategy that demonstrably helps to avoid local minima.

We compare the resulting algorithm, called Glimmer, to a wide variety of MDS

algorithms showing the advantages of our approach in terms of speed and accu-

racy. While our algorithm is applicable to produce output in N dimensions, our

implementation only scales to embeddings in two dimensions.

Below, we discuss the rich previous work in Chapter 2, and then present the

core ideas of the Glimmer multilevel algorithm and GPU-SF algorithm in Chap-

ter 3. We cover GPU considerations in Chapter 4, providing the details of our

GPU-based algorithms. In Chapter 5 we propose an algorithm for handling the

general-case where high-dimensional distances are not necessarily Euclidean. In

Chapter 6 we compare Glimmer to several other MDS algorithms in terms of com-

plexity, speed, quantitative accuracy with respect to the stress error metric, and

qualitative accuracy of layouts for datasets where ground truth is known for shape

or clustering.
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Chapter 2

Previous Work

The foundational ideas behind multidimensional scaling were first proposed by

Young and Householder [30], then further developed by Torgerson [29] and given

the name of MDS. Considerable research has gone into devising faster and more ro-

bust solutions. In the interests of space we focus on the foundational work and the

three most commonly employed categories of current techniques: classical scal-

ing methods, distance scaling by nonlinear optimization, and distance scaling by

force-directed approaches. In the descriptions below, N is the number of points,

and L is the dimensionality of the low-dimensional target space, while H is the

dimensionality of the high-dimensional input space.

2.1 Classical Scaling

Classical scaling methods compute exact or approximate analytical solutions to the

global minimum of the strain function

strain(X) = ‖XXT −B‖2
F

where X is the matrix of the coordinates of the low-dimensional configuration,

B = 1
2 J∆J, and J is the so-called centering matrix J = I − n−11T 1 which centers

the high-dimensional coordinates around the origin. If the underlying distances in

the distance matrix ∆ are Euclidean, then B is the transformation from a distance



Chapter 2. Previous Work 6

matrix to an inner product, or Gram matrix. Rather than minimizing the discrep-

ancy between distances as in stress, classical scaling minimizes the discrepancy

between inner products. Although strain is closely related to stress, it may have

a very different minimum. These spectral methods find embedding coordinates X

by computing the top eigenvectors of B sorted by decreasing eigenvalue. Classical

scaling is equivalent to Principal Component Analysis, another popular dimen-

sionality reduction method, when the coordinates are centered at the origin and

normalized such that the largest distance is equal to 1. The original algorithm,

Classic MDS [29, 30] computed a costly O(N3) singular value decomposition of

this matrix. Modern classical scaling methods quickly estimate the eigenvectors

using the power method or other more sophisticated iterative methods that employ

O(N2) matrix-vector products.

A host of Nyström methods [23] have recently been proposed to avoid the

O(N2) computation of ∆ altogether, using a subset of that matrix to approximate the

eigenvectors. These include FastMap [9], Landmark MDS [8], and PivotMDS [4].

We use PivotMDS as an exemplar in the Glimmer performance comparison of

section 6, since it was shown to be the most accurate classical scaling approxima-

tion algorithm [4]. All of these techniques achieve dramatic speed improvements

by reducing the complexity of classical scaling to essentially O(N). However, in

Section 6 we discuss the limitations of these approaches in handling sparse, high-

dimensional datasets for visualization . The Glimmer approach of distance scaling

yields higher quality layouts in these cases, and has competitive speeds whenever

the visual quality is equal.
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2.2 Distance Scaling by Nonlinear Optimization

Optimizing the stress function using gradient descent to find a low-error embed-

ding was pioneered by Kruskal [17]. Optimization approaches can easily incorpo-

rate weights to emphasize certain types of distances over others, or handle missing

values gracefully, in a way that is difficult using spectral methods. Unlike clas-

sical scaling methods, optimization approaches are subject to local minima. De

Leeuw’s accurate SMACOF [7] algorithm monotonically converges to a station-

ary point by minimizing a quadratic approximation of the stress function at each

iteration, resulting in provably linear convergence but at a large cost of O(N2L)

per iteration. Gansner et al. [11] use a SMACOF-based approach to stress ma-

jorization for graphs, but the sparsification and edge-weighting modifications they

propose are not suitable for general MDS because in general, data topology is un-

known. Computing the nearest-neighbor topology of general datasets is naively an

O(N2) pre-processing procedure. Accelerations of this technique are not straight-

forward to apply in high dimensions due to the fact that the k-nearest neighbor

graph generated from k-d trees or farthest-point sampling may not be connected.

The recent Multigrid MDS [5] algorithm employs the multigrid method for

discretized optimization problems, using SMACOF as a relaxation operator and

terminating in a small, constant number of iterations. The hierarchical approach

helps avoid local minima and makes substantial speed improvements over SMA-

COF alone, but the scalability is still limited, with a layout of 2048 points taking

117 seconds and requiring precomputation of the data topology. We were inspired

by the power of a hierarchical multigrid approach in the design of Glimmer, but use

very different operators for the three multigrid operations of restriction, relaxation,

and interpolation (described in more detail in Section 3.1).
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2.3 Distance Scaling by Force Simulation

Force-based MDS algorithms use a mass-spring simulation to optimize the stress

function, generating forces in proportion to the residual between low and high-

dimensional distances. This is a kind of nonlinear optimization where each point

computes a linear estimate of the gradient and moves in a fixed length according

to the integration time-step. However, the previous work and underlying machin-

ery of the force-simulation approach is different enough from standard nonlinear

optimization to warrant its own category. These methods are intuitive to under-

stand, easy to program, can support weights and interactivity, and typically pro-

duce lower-stress results than Classic MDS. Their drawbacks include numerous

parameters to the physical system such as damping constants and time-step size,

the introduction of oscillatory minima, and the possibility of local minima.

Force-simulation MDS is only tangentially related to other particle simulation

algorithms. N-Body and particle simulation accelerations such as Barnes-Hut [1]

and the Fast Multipole Method [12] rely on force models where forces are entirely

generated from the configuration of the embedding space. In distance scaling,

forces come from the difference between the configurations of two different spaces,

the original dataset space and the low-dimensional embedding space, and so the

accelerations proposed in these methods are not applicable.

The basic force-directed approach has a complexity of O(N3), with an O(N2)

cost per iteration for N iterations. We discuss the lurking assumptions surrounding

the use of N iterations in section 4.3. The CPU-based stochastic force approach

introduced by Chalmers [6] reduces the per-iteration cost to O(N), for a total O(N2)

cost. This stochastic algorithm is used as a subsystem to two further refinements,

with complexity O(N5/4) [20] and O(N logN) [15]. Glimmer uses a GPU variant

of the stochastic approach (GPU-SF) with an improved termination condition as
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a subsystem. We discuss its limitations with respect to accuracy and convergence

below. We compare Glimmer against three of these approaches in Chapter 6.

2.4 GPU Layout Approaches

GPUs have been shown to improve the speed of many general purpose algorithms

including graph layout and classical scaling, but have not been previously applied

to minimizing the stress function directly.

Reina and Ertl [24] proposed a GPU version of the FastMap algorithm, a clas-

sical scaling approximation algorithm, achieving considerable speedup over a CPU

implementation. However, the technique only accelerates the mapping into low di-

mensional space. The initial computation of the high dimensional distances, the

costliest part of the Nyström algorithms, is not sped up.

Frishman and Tal [10] take advantage of GPU parallelism to increase the speed

of their dynamic graph layout algorithm. Force-directed graph layout does have

deep similarities to force-directed MDS. However, their edge-collapsing coarsen-

ing stage relies on the graph topology as input, which would require precomputa-

tion of a nearest neighbor graph for the more general case of arbitrary MDS data.

The energy function they compute on the GPU ignores pairwise distances, and thus

does not minimize stress. They use the CPU for initial placement and for spatial

partitioning, whereas Glimmer runs all stages entirely on the GPU.

We further discuss the suitability of previous algorithms for speedup using

GPU parallelism in Section 4.1.
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Chapter 3

Glimmer Multilevel Algorithm

Glimmer is a force-based MDS algorithm which uses a recursive hierarchical frame-

work to improve accuracy and to reduce computation. Unlike other hierarchical

MDS algorithms, Glimmer is specifically designed to exploit GPU parallelism at

every stage of the algorithm. We use the multigrid vocabulary, because we were

inspired by those methods, but we call our algorithm multilevel because our final

formulation differs from the strict definition of multigrid algorithms.

3.1 Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider the highest level to be

the input data, with lower levels being nested subsets of that data reduced in size

by a fixed decimation factor. Multigrid methods use three operators at each level:

restriction, relaxation, and interpolation, as shown in Figure 3.1. Loosely speak-

ing, restriction performs the decimation to build the hierarchy, relaxation is the

core computation operator that reduces the error at a specific level, and interpola-

tion passes the benefit of the latest relaxation computation up to the next level. In

typical multigrid methods, a so-called v-cycle of restriction, relaxation, and inter-

polation is repeated several times. However, the Glimmer operators were designed

to converge in a single cycle.
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Restrict

Interpolate

Relax

(a) Multigrid algorithms

Reuse
GPU-SF

Restrict
Relax

Relax

Interpolate

(b) Glimmer algorithm

Figure 3.1: Multigrid and Glimmer Diagrams. a) The multigrid v-cycle. b) The
Glimmer multilevel algorithm. The restriction operator builds the hierarchy by
sampling points. GPU-SF is used as the relaxation operator at each level, with
all points allowed to move, and as the interpolation operator, with only the points
newly added to the level allowed to move. Lower levels untwist complex layouts
while higher levels converge quickly because of computation at the lower levels.

3.2 Multilevel Algorithm

Figure 3.1 shows a diagram of the Glimmer multilevel algorithm as a single v-

cycle. The pseudocode is given in Figure 3.2. The restriction operator we use to

construct the multilevel hierarchy simply extracts a random subset of points from

the current level. In Glimmer, we use a decimation factor of 8 between each level,

and stop when the size of the lowest level is less than 1000 points. These parame-

ter choices were empirically chosen after analyzing the speed/quality behavior for

decimation factors of several powers of 2 and a variety of minimum set sizes above

and below our final choices. Then, we traverse upwards to the top, alternating runs

of the relaxer for the current level with interpolating the results up to the next level.

In this traversal, we use stochastic force as our relaxation operator; that is, we per-

form iterations of a stochastic force MDS algorithm (GPU-SF) for all the points

at a particular level until the system converges. Perhaps surprisingly, we also use

the stochastic force algorithm as our interpolation operator. We fix the locations

of previously relaxed points, moving just the newly added points to fit the current

configuration. Again, we stop the interpolation step when the stochastic force sub-
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system converges. We continue with the traversal, freeing the formerly fixed points

for the relaxation step. We halt after running the relaxation operator on the highest

level that contains all points.

At the low levels, only a small subset of the points are involved in the com-

putation, so the system converges quickly. The higher levels converge in few it-

erations because the points placed at lower levels are likely to be close to their

final positions. In particular, although the relaxation step at the highest level in-

volves running stochastic force on all the points in the input dataset, the system

converges more quickly than it would if the stochastic force algorithm were run

with the points at random initial positions. Glimmer terminates after completing a

single v-cycle.

The average total time required across all levels of the Glimmer multilevel ap-

proach is roughly the same as when the stochastic GPU-SF force algorithm used

alone, as shown in Figure 6.3(a). The major difference between Glimmer and

the GPU-SF subsystem alone is accuracy and convergence. The multilevel Glim-

mer approach is more successful at avoiding local minima, which can give rise to

twisted manifolds in the low-dimensional placement, as shown in Figure 6.2. Sus-

ceptibility to local minima is often cited as a weakness of the force-based methods,

but using a multilevel approach atop a force-based subsystem allows the accurate

global structure of the point set to be found during the cheap iterations at the lower

levels. At the higher levels, the local structure is refined within the global context

inherited from lower levels through interpolation. When GPU-SF falls into a local

minimum that Glimmer avoids, GPU-SF may terminate quickly but with visually

unacceptable results.
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restrict ( p o i n t s ) :
i f ( s i z e ( p o i n t s ) < t h r e s h o l d )

re turn e m p t y s e t ;
re turn r a n d o m s u b s e t ( p o i n t s ) ;

runGPUSF ( f i x e d , f r e e ) :
whi le ( ! conve rged )

s t o c h a s t i c f o r c e ( p o i n t s i n f r e e )
glimmer ( p o i n t s ) :

i f ( p o i n t s == e m p t y s e t )
re turn ;

s u b s e t = r e s t r i c t ( p o i n t s ) ; / / r e s t r i c t
gl immer ( s u b s e t ) ;
runGPUSF ( s u b s e t , p o i n t s − s u b s e t ) ; / / i n t e r p
runGPUSF ( emptyse t , p o i n t s ) ; / / r e l a x

Figure 3.2: Pseudocode for the Glimmer algorithm.

3.3 Multilevel Parameter Selection

This section describes our method for determining appropriate values for the dec-

imation factor F and minimum set size M parameters. We construct sets of test

values for each parameter; for F we use the set f = {2,4,8,16,32} and for M we

use m = {100,500,1000}. We then construct the cartesian product of the two sets

t = f ×m and run Glimmer using each element of t as input parameters on a series

of cardinalities of different datasets, recording the time and final stress for each run

of the algorithm. We use the stress and timing data to directly compare the effects

of ranges of multilevel parameters on stress and time for different datasets.

Figure 3.3 shows the effect of different decimation factors F for stress and

timing across a range of randomly-sampled cardinalities of a real-world dataset,

shuttle, described in section 6.2.1. By taking different size samples from the

dataset we can simultaneously observe the sensitivity of a parameter choice to ini-

tial random configuration and dataset size. Each parameter choice exhibits some

noise in the stress output, but only when the stress is above 0.03 is the local min-
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ima visually different. When F is 2, 16, or 32, we observe spikes in the stress

function indicating the presence of these noticable local minima. Using only stress

as a metric, 4 or 8 are sensible choices for the parameter F with relatively stable

convergence behavior. Looking at the timing graph, the correct choice of param-

eter value becomes clearer. When F = 2, the algorithm suffers a noticable time

penalty. Likewise, when F is 16 or 32, significant spikes appear. These are uncor-

related with the spikes in stress. Comparing the overall running times when F = 4

and F = 8, we observe a performance improvement of approximately 2 seconds

of F = 8 over F = 4. We have observed that the behavior of the parameter F is

independent of dataset and the minimum set size parameter M.

Similarly, Figure 3.4 shows the effect of using different minimum set sizes

M on final stress across cardinalities of the dataset docs (see section 6.2.1). We

add the final stress of GPU-SF on the same data as a reference to compare the

stress convergence behavior. There is a noticeable plateau in the stress results for

GPU-SF which indicates convergence to a local minimum. When we set the mini-

mum set size M before this region, the suboptimal convergence pattern disappears.

Figure 3.5 illustrates why we do not make M as small as possible. On datasets

smaller than 1000, such as the one shown in Figure 3.4, there is a noticable perfor-

mance penalty for the multilevel approach. In the interests of maximizing speed for

smaller datasets, it is useful make the value of M as large as possible. Rather than

require the user to find regions which are prone to local minimum, we empirically

observe that GPU-SF is more prone to local minima on datasets with cardinality

greater than 1000.
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3.4 GPU Considerations

The Glimmer algorithm can run on a CPU, and we have implemented an opti-

mized Java prototype as a proof of concept and to allow direct timing comparisons.

However, our restriction, relaxation, and interpolation operators are all carefully

designed to exploit GPU parallelism. Our use of the GPU does not affect conver-

gence or accuracy, but brings a dramatic speed improvement over previous MDS

approaches.

Modern GPUs have a user-programmable pipeline of highly parallel processing

stages, called shaders. The first stage operates on a stream of vertices, the second

stage operates on a stream of geometry, and the final stage operates on a stream

of pixels. The GPU pixel processors can be considered as a single-instruction

multiple-data (SIMD) unit operating in parallel on a subset of pixels in the stream,

where the SIMD batch size varies from 16 to 1024 in recent GPUs. These units

have random read/write access to data stored in texture memory, so textures can be

used in place of arrays. Computation occurs when a textured polygon is rendered

using a shader. Typical computations take multiple rendering passes, where the

only communication channel between processing units is writing a texture in one

pass, then reading from it in a later pass.

The porting of general purpose algorithms to graphics hardware is subject to

certain pitfalls. For example, memory accesses are a common bottleneck for gen-

eral purpose GPU programs. The number of accesses per shader program execution

GPUs should be kept relatively small and constant to avoid performance problems.

We discuss how this pitfall impacts our choice of MDS subsystem in section 4.1.

Glimmer and GPU-SF are general approaches that do not depend on specific

hardware features of a particular GPU. The most recent G80 nVidia GPUs handle

all three shader types with a shared set of SIMD clusters that can be programmed
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with a general-purpose parallel languaged called CUDA [21]. Although our algo-

rithms could be implemented CUDA, we can operate across several generations

of GPUs by using a more generic model of GPU processing. Our algorithms run

on any card that supports pixel shaders, and we compare speeds on two different

generations of cards in Section 6.

3.5 Restriction

The restriction operator creates a multilevel hierarchy from nested subsets of the

input data, randomly sampled from the enclosing set. We first run an O(N) prepro-

cessing step to randomly permute the input data on the CPU before loading it into

texture memory on the GPU. We then can easily access nested rectangles in texture

memory to solve the sampling problem. Traversing the hierarchy from bottom to

top in the second leg of our v-cycle is handled by enlarging the size of the render-

ing polygon, with no shader code or extra storage required to create the hierarchy

of levels. Our solution avoids the need to do random sampling on the GPU, which

would be slow.

Our restriction operator does not require any explicit extra computation, and

specifically does not rely on having any geometric locality information. In contrast,

the previous Multigrid MDS approach [5] must carry out an preprocessing step

to find nearest neighbors in the high-dimensional space. In our approach, high-

dimensional neighborhoods around each point are gradually discovered during the

stochastic interpolation and relaxation operations.
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Figure 3.3: Stress and Timing Results for Decimation Factor Tests. a: Graph
showing the effect of decimation factor F on the final stress of a configuration
computed by Glimmer across a range of random samples from a dataset. Only
when F is 4 or 8, do we not observe spikes representing local minima. b:. Graph
showing the effect of decimation factor F on the final time across the same range
of dataset cardinalities. When F is 8 we observe the fastest average convergence
time.
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the Glimmer minimum set size parameter M across a range of randomly sampled
datasets. Also included are the final stress results for GPU-SF on the same data.
When processing datasets with more than 10000 points, GPU-SF regularly termi-
nates at a local minimum. By setting the minimum set size M before this region,
we can help avoid the problem.
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Chapter 4

GPU Stochastic Force

GPU-SF is our GPU-friendly stochastic force MDS solver used as a subsystem

in Glimmer, inspired by the Chalmers [6] algorithm. Without GPU acceleration,

the GPU-SF algorithm has nearly identical runtime characteristics with the CPU-

based Chalmers one. The only differences are the new termination criteria that we

propose, and the asymmetric force calculations.

4.1 GPU-Friendly MDS

Glimmer’s relaxation and interpolation operators both benefit from rapid execution

of a simple MDS subsystem, so we propose a GPU-friendly MDS algorithm. In

general, algorithms whose iterations exploit a form of sparseness perform best on

graphics hardware. By sparse, we mean a limited number of computations and non-

local accesses per point, a number far less than the total number of points N. This

restriction immediately disqualifies most MDS algorithms because of their reliance

on dense matrices or submatrices for matrix-matrix or matrix-vector operations.

Traditional force-based MDS is also dense, since each point must access every

other point to compute its force.

On the other hand, most of the accelerated MDS algorithms that exploit sparse-

ness may fail to achieve accuracy on certain datasets. For example, PivotMDS,

Landmark MDS, and the parent-finding approaches of accelerated force-directed
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MDS [4, 20] achieve their speedups by only considering a subset of rows of the

input distance matrix. While distance matrices frequently exhibit considerable re-

dundancy, these algorithms may discard important information in the selection of

these rows.

We have identified the stochastic force algorithm [6] as especially appropriate

for our requirements. Each point only references a small fixed set of other points

during an iteration step, and the selection of this fixed set is not limited to any

subset of the input. Thus, in a single iteration of the stochastic force algorithm,

each point performs a constant amount of computation and accesses only a constant

number of other points, regardless of dataset size.

4.2 Stochastic Force Algorithm

The stochastic force algorithm iteratively moves each point until a stable state is

reached, but the forces acting on a point are based on stochastic sampling rather

than on the sum of all pairwise distance residuals. More specifically, two sets of a

small, fixed size are maintained for each point: a Near set, and a Random set. The

forces acting on a point are computed using only the pairwise distances between

the points in its two associated sets. Each set initially contains random points.

After each iteration, any members of the Random set whose high-dimensional dis-

tance to the point is less than those in the Near set are swapped into that Near set.

The Random set is then replaced with a new set of random points. After many

iterations, the Near set will converge to the actual set of nearest neighbors. The

retention of nearest-known-neighbors has the effect of maintaining the topology of

the data in the embedding space, while the Random set functions both as a means

of resolving the Near set and maintaining the global structure of the dataset in the

embedding space. Chalmers proposes a Random set of size 10, and a Near set
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of size 5. We use 4 for the size of each set to match the 4-element vector types

supported by the GPU.

As with any force simulation algorithm, stochastic force has an integration

method and parameters. We use Euler integration with a time step of 0.3 of

both force and velocity. We normalize the sum of forces by a size factor of

1/(|Near|+ |Random|). Furthermore, we dampen these forces by computing the

relative velocity vector between each point and the points in its Near and Random

sets, scaling it by a damping factor 0.3 and subtracting it from the force vector

between these vertices.

4.3 Termination

Some previous iterative MDS algorithms do not have an explicit termination cri-

terion, and depend on the user to monitor the layout progress and halt the compu-

tation when deemed appropriate [25]. Because we use the GPU-SF algorithm as

a subsystem in Glimmer, we need to quickly and automatically determine the cor-

rect time to terminate computation. In other approaches [15, 20], the computation

is run for a fixed number of iterations, usually N. Although linear convergence was

proven for the SMACOF algorithm [7], it has been generally assumed for many

force-directed approaches. We show in Chapter 6 that this assumption is not safe

to make, frequently leading to overkill that wastes time, or underkill that halts

computation before the layout is accurate.

A standard termination criterion for nonlinear optimization is to terminate when

the gradient of the function converges to zero. In MDS, this criterion implies that

the difference between iterations in the stress error metric given by Equation (1.1)

converges to some small number ε. Computing stress for a configuration requires

O(N2) computations. Producing this value at each iteration would be far more
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expensive than the Glimmer algorithm itself. To remain speed competitive, the

algorithm needs an termination condition requiring only O(N) computations. We

devised and evaluated two different approaches, one using the average point veloc-

ity and the other a sparse approximation of the stress function. The sparse stress

approximation proved to be a superior termination condition because it exhibits

monotonic behavior in a multilevel context.

4.3.1 Average Point Velocity

Previous algorithms such as Morrison’s subquadratic MDS algorithm [19] termi-

nate by checking whether the change in velocity of the particle system between

iterations falls beneath a fixed threshold. This linear-time function returns the sum

of the total velocities of each particle which have already been computed as part

of the force simulation. We set the units of velocity to the number of pixels in

the embedding layout traversed per second. We found that this strategy has several

inherent problems. First, the magnitude of system velocity is dependent on the pre-

cise number of particles in the system. We normalize the signal by dividing total

velocity by the number of active particles in the system. Second, the velocity of

the system is very noisy and subject to oscillations, even with damping. We solve

this problem by low-pass filtering the signal, specifically with a Hann-windowed

sinc filter.

Third, using a single fixed termination threshold is problematic in the context

of a multilevel algorithm. That is, an appropriate convergence threshold for a low

level of the algorithm may be too high or low for another level. The initial stages of

the Glimmer algorithm are generally the highest energy whereas later stages might

see lower changes in velocity while making just as much qualitative progress. Our

solution to this problem was to set the threshold to a fraction α of the highest



Chapter 4. GPU Stochastic Force 24

Figure 4.1: Graph of normalized velocity per iterations for GPU-SF algorithm on
a grid dataset. After filtering high-frequency noise from the signal, low frequency
noise remians resulting in non-monotonicity of the signal. This phenomenon
makes normalized point velocity an undesirable choice in termination condition.

average velocity observed in that level. α should not be too low or the algorithm

will waste time with cycles that do nothing. If α is too high the algorithm will

terminate too soon. We found α = 1/10000 to be a useful compromise.

Fourth, the most difficult problem with using system velocity as a termination

criteria is low-frequency oscilliatory behavior that we observed in the signal that

was not removed by our low-pass filter. Figure 4.1 shows a velocity signal with

this behavior. We conjecture that the large-scale oscillation is a result of either the

asymmetry of the forces applied in our algorithm, the randomness of the neigh-

bor selection process, or that the system is ultimately based on spring-like forces.

Whatever its cause, non-monotonicity in a termination condition poses difficult
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problems for detecting system convergence. Eliminating such oscillations with fil-

tering would require a window so large that much of the algorithm would be spent

computing convolutions and far too many iterations would be spent in each stage of

the algorithm computing enough signal to fill a window, frequently after the signal

had converged. We tried a heuristic for detecting false convergence in the presence

of such non-monotonicity. To detect oscillations, we checked if a positive slope

exists across a window smaller than the window used to detect convergence. If

positive slope exists, then we ignore convergence. This ad-hoc solution ultimately

proved too sensitive, and the heuristic’s window size and parameters required ad-

justment according to different datasets.

We examined two other physical characteristics of the system other than ve-

locity in hopes of finding an appropriate and inexpensive termination condition.

The first of these is the average force of the system, defined as the average sum of

the active point forces. Computing this involves summing already computed force

values. The second is the average displacement. Computing displacement over a

window of D iterations requires storing the set of D previous iterations of layout

coordinates and subtracting the Dth oldest set from the current coordinates and

summing the absolute value of the results. Figure 4.2 shows a graph of these sig-

nals with respect to raw system velocity, filtered velocity, and normalized velocity

over several stages of a Glimmer run. Normalized velocity, force, and displacement

exhibit essentially identical behavior making none of them obviously superior to

the other as a termination criterion.

4.3.2 Sparse Normalized Stress

We instead use an approximation of stress that we call sparse normalized stress

based on the differences in distance values already computed. More specifically,
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Figure 4.2: The behavior of several physical signals of the simulation over a
Glimmer run. Since the signals share the same characteristics, none of them are
more useful than the others as a linear-time termination condition. Instead, Glim-
mer relies on a sparse approximation of the stress function.

sparse normalized stress is defined as

sparsestress(D,∆)2 =
∑i ∑ j∈Near(i)∪Random(i) (di j −δi j)

2

∑i ∑ j∈Near(i)∪Random(i) δ2
i j

(4.1)

Here, Near(i)∪Random(i) is the union of the index sets for point i, requiring only

O(N) computations to compute the stress for a configuration.

Because the contents of these sets change at each iteration, the sparse stress

value is noisy, making the raw function values inadequate as a convergence crite-

rion. To remove this noise we treat sparse stress as a signal and apply a temporal

low-pass filter, a windowed sinc in our implementation. The resulting smooth sig-
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Figure 4.3: Stress and Sparse Stress per Iteration. GPU-SF uses a sparse ap-
proximation (green) of the normalized stress function (orange), which converges
simultaneously and requires only minimal overhead to compute. We use a low-
pass filter (red), because the noise in the unfiltered signal is much larger than the
convergence threshold of ε = .0001.

nal closely mimics the behavior of the true normalized stress function, as shown in

Figure 4.3. Since we are interested in the behavior of the derivative of the stress

function and not the function itself, we convolve the sparse stress signal with the

derivative of the low-pass filter. This optimization follows from the theorem that

deriv( f ?g) = deriv( f )?g = f ?deriv(g)

where ? is the convolution operator and deriv() represents the derivative. The

algorithm thus terminates by comparing the filtered signal directly to ε.
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After empirical testing across many datasets, we arrived at the value of 50

iterations for the low-pass filter window. The termination criterion ε controls the

accuracy of the layout; in our experiments we chose ε = 1/10000. Our linear-

time termination criteria could benefit any iterative MDS algorithm relying on the

convergence of stress, including SMACOF, the Chalmers algorithm [6], and others

that use it as a subsystem [15, 20].

4.4 Stochastic Force on the GPU

GPU-SF is a version of the stochastic force algorithm that runs on the GPU as

a series of pixel shaders, with data storage in texture memory. The first stage of

GPU-SF updates the random index set of each point. Next, the set of high and low

dimensional distances are computed or fetched. This information is reorganized

to update the near index set. The final series of steps uses this information to

calculate the proper force to apply to the point and move it accordingly. Control is

then shifted back to the first step unless the termination condition is triggered.

In order to minimize GPU overhead and to work within system constraints,

GPU-SF has a quite different organization of code and data from the original

Chalmers algorithm. Each point in the stochastic force algorithm maintains a

fixed-size cache of state information such as low-dimensional position and near-

set membership.

The per-point state information is divided into vectors and tables which are

stored in texture memory on 2D textures. Figure 4.5 lists the textures used to store

this information and the sizes of the elements stored on the textures. Because the

smallest unit of texture memory is an RGBA pixel containing four 32-bit floats,

the number of pixels devoted to an element must equal the ceiling of number floats

divided by four. The per-point vectors are posHi and posLo, the high- and low-
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Stage Passes Pixels Input Textures Output Textures

1 Random Update 1 Ni perm index

2 HighD Distance Calc log4 H Ni posHi distHi

index scratch

scratch

3 LowD Distance Calc log4 L Ni posLo distLo

index scratch

scratch

4 Near Sort 6 Ni distHi distHi

distLo distLo

index index

5 Force Calc 1 Ni ∗L index scratch

distHi

distLo

posLo

velocity

6 Velocity Calc 1 Ni ∗L scratch velocity

7 Position Update 1 Ni ∗L velocity postLo

8 Termination Check log4 Ni Ni/4 j ∗L distHi scratch

distLo

scratch

Figure 4.4: GPU-SF Algorithm Stages. The GPU-SF algorithm carries out a
single layout iteration in eight stages. We list the number of rendering passes
each stage requires, the number of pixels affected by each pass, the textures read
as input arrays, and the textures written as output arrays. These stages repeat until
the termination check succeeds.

dimensional position of the points. Each element of posHi has size H floats, where

H is the dimensionality of the high-dimensional space. The size in floats of a

posLo element is L, the dimensionality of the low-dimensional space, which in

Glimmer is 2. The velocity texture keeps track of point velocities in the low-

dimensional space, and also has size L floats. The tables all have 8 entries, divided
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Tex. Name Size (pixels) Description

posHi dH/4e high-d point coords
posLo 1 low-d point coords
velocity 1 point velocity
index 2 Near & Random set indices
distHi 2 high-d distances to pts in index

distLo 2 low-d distances to pts in index

perm 1 random number resource
scratch 2dH/4e holds temporary results

Figure 4.5: GPU-SF Algorithm Textures. The GPU-SF algorithm uses textures
as storage. This table lists each texture used by the algorithm, the size in pixels of
the elements dedicated to each point and a brief description of the purpose of the
texture.

into two equal sections for points in the Near and Random sets. The distHi and

distLo textures contain the high- and low-dimensional distance between the point

in question and the items in the Near and Random sets. The index table contains

the pointers to the items in these sets. The total size in bytes of each texture is the

element size in pixels × 4 floats per pixel × 4 bytes per float × N, the number of

points in the input dataset.

Two textures are used as resources in the computation. The perm texture con-

tains a permutation of all indices that was precomputed on the CPU, of total size

N. The 2HN scratch texture is used for intermediate storage.

Information is packed into two dimensional textures as follows. We first com-

pute the number of pixels per element on posHi as P = dH/4e. We then compute

the total number of pixels required to store the data as P×N. To best fit this number

of pixels into a square region we compute the ceiling square root of this number,

R = d
√

PNe. Unfortunately, this may produce a texture dimension R that is not

divisible by the width of an element, which may force us to “wrap” an element
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across a row of texels. To eliminate this phenomenon we divide R by the width of

an element and take the floor of the result. The final width in pixels of our texture

posHi is W = PbR/Pc. To compute the height H of the texture, we just divide

the total number of points by the number of points in a row and round up. When

packing the remaining textures, we assume that they are W/P elements wide. This

strategy makes addressing point data uniform across textures.

Figure 4.4 summarizes the overall organization of GPU-SF, showing the seven

stages and which textures they update. A single iteration step is carried out in

10 + dlog4(L ∗H ∗N)e texture rendering passes. The number of pixels, Ni, pro-

cessed in each pass is also given in Figure 4.4, as an approximation of the total

work involved. When GPU-SF is invoked as a subsystem of Glimmer, the memory

footprint of these textures is always a function of the entire dataset size N, but the

number of pixels processed in each pass changes depending on the Glimmer level.

Stage 1 The first step of GPU-SF is to update the Random section of the index

set using perm. We acquire new random indices by sampling at a location in this

resource determined by P[P[x]+ iteration] where P is the permutation array, x is the

cardinality of the point, and iteration is the overall iteration number. This strategy

is inspired by the Perlin noise algorithm [22].

Stages 2 & 3 We need to compute distHi, the Euclidean distances in high-

dimensional space. Other distance metrics are possible with the use of distance

matrices. We discuss the use of distance matrices in Glimmer in Chapter 5. We

indirectly reference the points in posHi using the index set to compute the dif-

ferences between these points and the current one, storing them in the scratch

texture. We square each item in scratch, sum them together, and put the square

root of that number into distHi. The fast approach to summing k values on the
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GPU is a reduction shader that takes log4 k passes, which is far cheaper than loop-

ing through the values. A similar computation produces distLo from posLo, with

log4 L passes.

Stage 4 Updating the Near set with points in Random that are closer is slightly

tricky. If we simply sort by distance and pick the first 4 to be in the Near set, then

an item that appears in both Near and Random would be duplicated in the Near set.

Instead, we first sort by index, mark duplicates as having infinite high-dimensional

distance, and then resort by distHi. We sort each of the three textures index,

distHi, and distLo twice, using six rendering passes, combining the duplicate-

marking operation with the first sorting pass.

Stage 5 To do the force calculation, we compute the vectors between the point

and the 8 others in the Near/Random sets using index to look up their low-dimensional

positions in posLo. We scale these vectors by the difference between distLo and

distHi, then use the velocity texture for damping. Damping is designed to in-

hibit excessive particle oscillation and improve convergence. Our damping scheme

computes the relative velocity vector between each vertex and its indexed vertices

and subtracts it from the force vector between these vertices. We sum these damped

force vectors, and save the resulting vector into the scratch texture.

Stages 6 & 7 We integrate the scratch forces into velocity in one pass, then

integrate velocity and update posLo in another pass. Both integrations are done

using Euler integration with parameters mentioned in Section 4.2.

Stage 8 The final step of the algorithm checks the termination condition. We

can calculate the normalized sum of squared distance differences in distHi minus
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distLo for our termination condition in 2log4(N) rendering passes using a reduc-

tion shader on scratch. The 4 j factor in the pixel size indicates the size reduction

by a factor of four each pass, for a total of 4/3Ni ∗L pixels processed.

In the Chalmers algorithm, forces are applied symmetrically between two points,

so that point i is affected not only by forces from its own Near and Random sets,

but also by any forces from other points that contain i in their Near or Random

sets. In our GPU-SF version, forces are applied from points in the Near/Random

sets to point i, but not vice versa. We abandon this explicit symmetry because it

would require a scatter random access write operation, which is not supported on

current GPUs without slow, memory-intensive workarounds. The effect of those

symmetric forces emerges implicitly as the Near sets of neighboring points gradu-

ally converge to include each other.
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Chapter 5

Scalability With Distance

Matrices

In our discussion thus far, we have assumed that the input for the MDS algorithm

is points in high dimensional space and the desired distance metric is Euclidean.

In this case, high dimensional Euclidean distances are computed on the fly as part

of the work of the MDS algorithm. Although the calculation of high dimensional

distances is one of the most expensive stages of many MDS algorithms, Euclidean

distance is one of the most straightforward and cheap metrics compared to many

of the other possibilities.

In many applications, the required distance metric may be so costly or com-

plex to compute that doing so on the fly every time that it is used would be in-

feasible, for example the Earth Mover’s Distance between images [27]. Moreover,

in many cases there is no direct access to any formulation of points in a high di-

mensional space: the only available data is pairwise distances. In these cases, an

MDS algorithm must accept precomputed distances as the input data, typically in

a precomputed distance matrix. A naive approach would be to store the matrix in

a texture on the graphics card. The texture, called dmatrix, would replace posHi.

Since distance matrices are symmetric, we need only store N2/2 of the entries.

The GPU-SF algorithm would then copy the proper distances from dmatrix dur-

ing stage 2 instead of computing them from high dimensional coordinates making
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the number of passes for stage 2 only 1 instead of log4 H. Also, we reduce the size

of the elements of the scratch texture from 2dH/4e pixels to 2 because 2 pixels

is the element size required for computing low-dimensional embedding distances

of dimension 2 in stage 3 of the GPU-SF algorithm.

We now compare the texture memory requirements of the Euclidean case and

the case where we store the distance matrix in texture memory. Figure 4.5 gives

the size in RGBA pixels of individual elements for each texture the Euclidean

case. Using the element size entries of the table as a guide, for a dataset of N

points of dimension H, the posHi texture requires allocating a texture of dH/4eN

pixels. Because each pixel is 4 floats and each float is 4 bytes, posHi requires

4(4dH/4eN) = 16dH/4eN bytes of texture memory. We then proceed to multiply

the texture element size gathered from Figure 4.5 by 16 for each texture used by

Glimmer, thus computing the total size of the each texture in bytes and store the

sizes as the entires in Figure 5.1. The sum of the sizes in bytes of all the textures

yields the number (144 +48dH/4e), which is the total number of bytes of texture

memory required by the Glimmer algorithm in the case of computing Euclidean

distances on the fly from N coordinates of dimension H. To derive the maximum

number of points of dimension H that Glimmer can compute on a card with 256MB

of texture memory we solve for N in the equation

totalBytes = (bytesPerElement)N

256,000,000 = (144+48dH/4e)N

and get N = 256,000,000/(144 + 48dH/4e). If H = 9 then we theoretically can

fit 888,888 points in texture memory.

Computing the total texture memory needed for the case where we store the

distance matrix requires changing two values in Figure 5.1. First, we replace the

16dH/4eN from posHi with 16N2/2 = 8N2, the total number of bytes required
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Texture Name Total Texture Size (bytes)

posHi 16dH/4eN
posLo 16N
velocity 16N
index 32N
distHi 32N
distLo 32N
perm 16N
scratch 32dH/4eN
Sum Total (144+48dH/4e)N

Figure 5.1: GPU-SF Texture Memory Requirements. The GPU-SF algorithm
uses textures as storage. This table lists each texture used by the algorithm in the
case where Euclidean distances are computed on the fly and their respective sizes
in bytes of texture memory.

to store N2/2 floats in the dmatrix texture. Second, because the element size of

scratch has changed to 2 pixels, the total size of the scratch texture is 32N bytes.

Thus, the total number of bytes required by Glimmer for N points in the distance

matrix case is 8N2 + 176N bytes. To derive the maximum number of points that

Glimmer can compute using this method on a card with 256MB of texture memory,

we solve for N in the quadratic equation

256,000,000 = 8N2 +176N

and get a theoretical maximum of N = 5,645 points. Unlike in the case where

distances are computed on the fly, doubling memory does not mean doubling the

number of points handled. On a card with 512MB of texture memory, the theoreti-

cal maximum is still only 7,989 points. Clearly, storing the entire distance matrix

on the graphics card has scalibility problems.

We present a scalable solution that exploits our use of precomputed permuta-

tions for handling stochastic operations. Our methods, which we call distance pag-
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ing and distance feeding, solve the texture memory scalability problem of quadratic

storage. Although we have only implemented a proof of concept for the GPU ver-

sion of Glimmer, the idea could benefit CPU-based MDS algorithms as well.

Distance paging draws inspiration from texture paging, used when a texture is

too large to fit in texture memory but the application designer knows that only a

small region of the texture is visible at one time. The designer splits the texture into

chunks which are loaded from main memory only when necessary. Because we use

a precomputed random number resource when updating our Random set, we know

in advance the precise sequence of high-dimensional distances the program will

access per iteration. We arrange the required distances in order of access, either in

advance or online, and a pager running on the CPU loads these blocks from main

memory into texture memory at every GPU-SF iteration.

We now compute the texture memory requirements for the distance paging

case. We replace the posHi texture with the smaller distPage texture and dis-

tances are simply fetched instead of computed. Rather than N2/2 floats, distPage

requires storage for only 4N floats or 16N bytes. As with the case of storing the

entire distance matrix, the element size of scratch has changed to 2 pixels and

the total size of the scratch texture is 32N bytes. We again sum the individual

terms to find that the texture memory required by Glimmer with distance paging is

192N bytes. The theoretical maximum number of points on a card with 256MB of

memory is then 1,333,333 points. Figure 5.2 summarizes the memory limitations

of the Glimmer algorithm in all the previously discussed cases.

Distance feeding allows further scalability by supporting lazy evaluation. Be-

cause we use a stochastic method, many pairwise distances are not needed at all.

Our use of precomputed permutations allows us to know in advance which dis-

tances will be required in the computation. A distance feeder is a CPU process

that takes two points as an argument and returns a distance, which can then be up-
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Method Total Bytes per N Max Points on 256MB card

On-the-fly Euclidean (144+48dH/4e)N 888,888 (H = 9)
Distance Matrix 8N2 +176N 5,645
Distance Paging 192N 1,333,333

Figure 5.2: Theoretical memory limitations of the GPU-SF algorithm on a
256MB card when using different techniques to compute inter-point distances.
We introduce Distance Paging to solve the quadratic storage requirements with
using distance matrices.

loaded to the textures on the graphics card. With distance feeding, there is no need

to precompute the entire distance matrix. Often, the time required to precompute

distance matrices is the most significant scalability bottleneck for MDS applica-

tions. With precomputation, the layout runs slower, but less work is done in total

because unused pairwise distances never need be computed. Using distance pag-

ing and distance feeding, Glimmer can handle distance matrices far larger than the

limits of texture memory on the graphics card.

5.1 Paging and Feeding Performance

We compare the performance of our distance matrix pager and feeder schemes

with an example from graph drawing. We use a graph named bcspwr10 from

the Matrix Market collection [3] of over 5,300 nodes, where the O(N2) size of the

distance matrix is too large to practically fit into available texture memory on our

256MB card but slightly below the theoretical limit. MDS can be used to lay out

the graph because stress is closely related to the Kamada-Kawaii force-directed

placement energy. Graphs are a good example of datasets where precomputing

the full distance matrix is expensive: solving the all pairs shortest path problem

is O(N3), taking 623 seconds. When we use the pager to work with this distance
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matrix, there is no slowdown in the performance of Glimmer; in fact, loading the

texture is cheaper than computing the high-dimensional distances. Computing the

layout with paging took only 5.5 seconds. In contrast, the feeder-based layout

took 172 seconds which is less than the total 628.5 seconds required by paging.

Figure 5.3 shows the graph layout produced by Glimmer using the distance matrix

computed from the bcspwr10 graph.
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Figure 5.3: The bcspwr10 graph with layout by Glimmer using distances pre-
computed by graph search. Rather than compute the entire O(N2) distance matrix,
we need only compute enough distances for the stress function to converge. Be-
cause we know this sequence in advance, we compute distances using a distance
feeder and drastically reducing compute time over the distance paging approach.
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Chapter 6

Results and Discussion

We compare our approaches to previous work in terms of asymptotic complex-

ity, speed, the quantitative metric of normalized stress, and the qualitative visual

analysis of layouts.

The MDS algorithms that we chose to compare against are a mix of founda-

tional algorithms and competitive exemplars of the major approaches. The foun-

dational algorithms are a MATLAB version of Classic MDS1, our MATLAB im-

plementation of SMACOF, and a Java implementation of Chalmers2. These three

foundational approaches are known not to be speed-competitive, so measures of

stress and layout quality are more interesting than the time performance. We ter-

minate SMACOF when the change in the normalized stress function falls below

1/10000, the same criterion used for GPU-SF and Glimmer.

We use a Java implementation of PivotMDS3 [4] as the classical scaling ap-

proach, using the default of 50 landmarks except where noted. We use Jourdan’s

O(N logN) Hybrid [15] as the fastest force-directed approach2. Bronstein’s Multi-

grid MDS [5] is not publicly available, but we know that it is not speed-competitive

with Hybrid or PivotMDS from the timings given in the paper.

While Classic and PivotMDS are designed to minimize strain rather than stress,

we report on the success of their layout using the stress metric. We do so for

1cobweb.ecn.purdue.edu/˜malcolm/interval/2000-025
2www.lirmm.fr/˜fjourdan/Projets/MDS/MDSAPI.html
3software courtesy of Christian Pich

cobweb.ecn.purdue.edu/~malcolm/interval/2000-025
www.lirmm.fr/~fjourdan/Projets/MDS/MDSAPI.html
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consistency, and also because we consider stress to be the most suitable quantitative

metric that captures our qualitative judgement about layout quality for visualization

purposes. In other MDS applications outside of information visualization, where

direct visual inspection of the layout is not required, stress may be a less suitable

metric.

6.1 Complexity

The cost of one GPU-SF iteration is proportional to the number of rendering passes

multiplied by the number of pixels affected at each pass. Multiplying these values

from Figure 4.4 yields a per-iteration cost of (7 + log4 H + log4 L +5.33 L)∗Ni =

O(Ni log4 H). The cost of a full GPU-SF invocation is O(C Ni log4 H) where C is

the number of iterations performed before the system converges. As we discuss in

Section 4.3, C is not necessarily N. We have observed that it varies depending on

dataset characteristics, ranging from constant to O(N).

The number of points Ni supplied to GPU-SF at each Glimmer level using

decimation factor F ranges from 1000 up to N, where Ni−1 = Ni/F , and the number

of levels is logF N. The total number Nt of points processed across all Glimmer

levels is bounded above by (F/(F − 1)) ∗N, the infinite sum of (1/F i) ∗N. The

cost of each Glimmer level is two invocations of GPU-SF, one for interpolation

and one for relaxation. The restriction stage of Glimmer does not incur any extra

costs that we need to consider in our asymptotic analysis, because the sampling

is built into the algorithm. Thus, the total complexity of Glimmer on the CPU is

O(C N log4 H).

We now discuss the effects of GPU parallelism. Asymptotic analysis of paral-

lel programs is difficult to present concisely. To oversimplify, a GPU with a SIMD

size of p, where p ranges from 16 to 1024 on current cards, speeds up compu-
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tation up to a factor of p. Since we carefully designed our shaders and render

passes to avoid conditionals and loops, our actual speedup is close to this theo-

retical maximum. The computational complexity of Glimmer on the GPU is thus

approximately O(C N log4 H / p).

In contrast, the complexity of Hybrid is O(N logN), Chalmers is O(N2), SMA-

COF is O(N2), and Classic MDS is O(N3). Pivot MDS has a complexity of

O(k3 + k2n + kn), and for a fixed number k of landmarks and a large number of

points N it is typically considered linear.

6.2 Performance Comparison

We compare Glimmer and GPU-SF to each other and to several previous MDS al-

gorithms, across a range of real and synthetic datasets. All benchmarks are run on

a Pentium 4 3.2 GHz CPU with 1.5 GB of memory and an nVidia 7800GS graphics

card with 256MB of texture memory, except for the 8800GTX timings for Glim-

mer and GPU-SF which are run on an Intel Core 2 QX6700 2.66 GHz CPU with

2 GB of memory and an nVidia 8800GTX graphics card with 768MB of texture

memory. No timings in this thesis include file loading time or rendering time for

any algorithm. However, in the accompanying video, the timings for GPU-SF and

Glimmer do include render time for interactive display. All layout times below in-

clude computing high-dimensional distances on the fly. Although some algorithms

use an approximation of the stress function while finding the embedding, all stress

figures reported below use the full normalized metric given in Equation (1.1).
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6.2.1 Datasets

We use a mix of of synthetic and real-world benchmark datasets. The small cancer

dataset from the UCI ML Repository4 has 683 points in 9 dimensions. The ground

truth for the two major clusters of malignant versus benign tumors is shown with

color coding of orange and blue, respectively. The shuttle small dataset, also

from UCI, has 14,500 points in 9 dimensions, with shuttle big having the same

structure but 43,500 points. The ground truth for the seven clusters is shown with

color coding. We generated the well-known synthetic swissroll benchmark, a

2D nonlinear manifold of 1089 points embedded in 3 dimensions. We generated

a set of synthetic datasets of smoothly varying cardinality, where a 2D grid is em-

bedded in 8 dimensions. We also tested the effects of adding noise to those grids,

specifically 1% noise in a third dimension. The docs dataset is a real-world exam-

ple of a large collection of unordered document metadata used to study document

clustering algorithms5 [16]. These collections can be represented as highly sparse

matrices where a row represents a document and a column represents a text feature.

In Glimmer and GPU-SF, we store this matrix compactly in texture memory as a

value-index pair. There are 28,433 points in 28,374 dimensions, with the ground

truth of six clusters again shown by color coding.

6.2.2 Layout Quality

Figure 6.1 shows the visual quality, normalized stress, and timing of Glimmer,

GPU-SF, Hybrid, and PivotMDS layouts on four datasets with known structure. In

the case of grid, the correct shape is known. In the other three cases, the correct

partitions of the points into clusters are available with these benchmark datasets,

4www.ics.uci.edu/˜mlearn/MLSummary.html
5Data courtesy of Aaron Krowne.

www.ics.uci.edu/~mlearn/MLSummary.html
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so the extent to which the color coding matches the spatial grouping created by an

algorithm is a measure of its accuracy.

Qualitatively, with cancer the three algorithms Glimmer, GPU-SF, and Pivot-

MDS indicate these two color-coded groups clearly with spatial position. Quanti-

tatively, the stress of Glimmer and GPU-SF is an order of magnitude lower than

PivotMDS. Hybrid does separate the two groups, but produces misleading subclus-

ters in the orange group.

With shuttle big, GPU-SF fails to separate the clusters and has clearly termi-

nated prematurely. Hybrid produces a somewhat more readable layout separating

the red cluster from the other two, but is very slow. Glimmer and PivotMDS both

produce useful and qualitatively comparable layouts separating the clusters. The

PivotMDS layout is twice as fast, but has noticeable occlusion and much higher

stress than the Glimmer layout.

The 10,000-point grid is accurately embedded by Glimmer, GPU-SF, and Piv-

otMDS in comparable times. Hybrid is much slower but nevertheless terminated

too soon, suffering from very noticable qualitative distortion and with a much

higher quantitative stress metric compared to the other layouts.

The Glimmer layout of the docs dataset is qualitatively better than the other

three. It shows several spatially distinguishable clusters, color coded by blue, red,

orange, and green. The blue cluster is split into three parts. It took nearly 16 sec-

onds with normalized stress of 0.271. GPU-SF is three times faster but terminated

prematurely with a poor layout: although the points are grouped into clusters, the

clusters all occlude one another. Hybrid also suffers from cluster occlusion. The

stress is nearly twice as high, and the spatial embedding does not clearly separate

any of the given clusters. PivotMDS is very fast, but almost completely fails to

show the dataset structure. The normalized stress value of 0.928 is extremely high.

Figure 6.2 illustrates the very noticeable difference in visual quality of a grid
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layout between a fast but inaccurate GPU-SF layout that failed to converge accu-

rately because of premature termination at a local minimum, and a correct layout

from Glimmer. GPU-SF can get caught in local minima where the low-dimensional

manifold is twisted, and will either take more time to slowly unfold or stop too

soon before the accurate solution is reached because the termination condition is

fulfilled. Glimmer combats such situations by unfolding these twists at the highest

tiers in the multilevel hierarchy. Twists in layouts of small point sets are higher

energy states relative to the overall energy of the dataset and more likely to be

properly resolved before the termination condition is met. This strategy does not

make Glimmer immune to such states, but helps to reduce their probability. The

Glimmer multilevel approach succeeds more often at finding the global minimum

configuration.

6.2.3 Speed and Stress

We use the synthetic grid dataset and parameterize random permutations of shuttle

and docs to compare algorithm speed and accuracy across a large interval of

dataset cardinalities.

With respect to speed, Figures 6.3(a), 6.4(a), and 6.5(a) show that the algo-

rithms fall into two main categories. As expected, the polynomial-time founda-

tional Classic, SMACOF, and Chalmers algorithms do not scale past thousands of

points, taking minutes or hours to compute such layouts. The remaining group of

algorithms scale to hundreds of thousands of points in under a minute, as shown in

more detail in Figures 6.3(b), 6.4(b), and 6.5(b). Hybrid is the slowest. The timing

relationship of PivotMDS versus Glimmer and GPU-SF depends on the generation

of the graphics card. PivotMDS (brown) is consistently faster than Glimmer and

GPU-SF on the older 7900GS card (violet and red respectively), but slower than
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Glimmer and GPU-SF on the newer 8800GTX card (grey and plum respectively).

The exception is the sparse docs, where PivotMDS is fastest but yields incorrect

results.

The stress graphs of Figures 6.3(c), 6.4(c), and 6.5(c), with log-scale vertical

axes, are a critical part of the story, showing where there is a speed-accuracy trade-

off. For each dataset, we draw a dashed black line as a rough indication of the stress

threshold where visual quality is affected based on our empirical inspection of the

layouts. We characterize an algorithm as outperformed by a competitor when its

accuracy falls under this line, even if the competitor is faster.

For grid, in Figure 6.3(c), classical scaling algorithms like Classic (pink) and

PivotMDS (brown) produce perfect, zero-stress layouts. SMACOF (blue) and

Glimmer (violet) also produce excellent layouts with stress less than 0.01. The

dashed black line shows that for grid, layouts with stress higher than approxi-

mately 0.009 have perceivable inaccuracies. GPU-SF (red) produces accurate low-

stress layouts until around 15,000 points. At cardinalities beyond that, it terminates

early but the layout is inaccurate, so GPU-SF is outperformed by Glimmer. Finally,

Hybrid (green) and Chalmers (orange) are both inaccurate, producing comparable

layouts with noticable distortion and stress an order of magnitude greater than the

competitive algorithms.

For shuttle, in Figure 6.4(c), the location of the dashed black line above the

measured stress for all algorithms indicates that all yielded acceptably accurate re-

sults, except for the special case of GPU-SF. We show a second red dashed line to

indicate that GPU-SF layouts above it are qualitatively inaccurate. The stress in

these failure cases is numerically lower than the acceptable PivotMDS and Clas-

sic MDS layouts, showing that there is not always a direct correlation between

stress and visual quality, especially when comparing the results of differing opti-

mization strategies. At high cardinalities, GPU-SF is very likely to terminate too



Chapter 6. Results and Discussion 48

soon and produce unreadable layouts where clusters are not spatially separated, as

in Figure 6.1. We thus argue that Glimmer outperforms GPU-SF in this case as

well. The approximate PivotMDS algorithm (brown) yields higher-stress layouts

than the foundational Classic approach (pink) but qualitatively they are the same.

SMACOF (blue) produces the lowest-stress layouts, followed by Glimmer (violet).

Hybrid (green) falls in the gap between the classical scaling methods and the other

distance scaling techniques.

In docs, shown in Figure 6.5(c), we see much higher stress levels, with 0.1 to

1.0 as the axis range, because the intrinsic dimensionality of the data is much higher

than 2. We see considerable separation between the accuracy of the algorithms.

Although the magnitude of separation between the GPU-SF and Glimmer stress

measurements may not seem large, the visual difference is indeed very perceptible,

as can be seen in Figure 6.1. Only Glimmer is underneath the dashed black line

showing qualitatively correct threshold. It produces layouts of acceptable quality

quite quickly, taking 2 seconds on the 8800 card and 12 seconds on the 7900 card

for the 28,433 point dataset. SMACOF also provides acceptable quality layouts

of lower stress than Glimmer, but would require several hours to compute them.

Both PivotMDS and Classic produce very inaccurate layouts, as shown by their

high stress values.

Figure 6.6 further illustrates the relationship of speed and stress, showing log-

log scatterplots of the timing and stress of the seven algorithms on three small

datasets: cancer, swissroll, and a grid of 1000 points with 1 percent noise.

Each algorithm is represented by a single colored dot, except for PivotMDS where

we show a brown line connecting three runs of 50, 100 and 300 pivots. Dots closer

to the lower left corner represent algorithms outperforming those further towards

the upper right.

The plots show an almost linear relationship between the stress and timing of
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PivotMDS (brown), Hybrid (green) Classic (pink), and SMACOF (blue), indicat-

ing a simple speed-accuracy tradeoff for these algorithms. Chalmers (orange) is an

obvious outlier in the underperforming upper right quadrant, with slow times and

high stress. Glimmer (violet) and GPU-SF (red) are outliers in the overperforming

lower left quadrant, with both fast times and low stress. Our two algorithms break

the pattern by achieving higher-speed layouts without an accuracy penalty. We can

also see that GPU-SF is not simply faster than the Chalmers algorithm that inspired

it; thanks to the more robust termination condition, it achieves lower stress.

SMACOF produces the lowest stress layouts, but is unacceptably slow. The

Hybrid method substantially reduces the time required to produce a layout, but the

resulting layout configuration can contain substantial artifacts. GPU-SF harnesses

the GPU to converge rapidly but often terminates prematurely for large datasets.

Glimmer uses a multilevel approach to avoid premature termination and computes

a low-stress configuration in seconds by exploiting the GPU, scaling to datasets

beyond 100,000 points.

6.2.4 Summary

Glimmer is much faster than the foundational SMACOF, Classic, and Chalmers

algorithms. For datasets of 8 dimensions and 50,000 points, this improvement is

on the order of 40,000X. Glimmer reliably achieves lower stress than Chalmers,

but is higher stress than SMACOF, and the victor for stress between Classic and

Glimmer depends on the dataset.

Glimmer produces results with lower stress and better visual quality than Hy-

brid. Glimmer is also faster, with the exception of docs on the 7900GS GPU,

where Hybrid is faster but yields very uninformative layouts.

GPU-SF and Glimmer are very close in speed. In all cases where GPU-SF
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is much faster than Glimmer, it has terminated too soon and yields uninformative

layouts. The stress graphs show that early termination by GPU-SF is correlated

with larger dataset cardinality. Glimmer often produces results with lower stress

and better visual quality.

Finally, Glimmer is faster than PivotMDS when using the latest 8800GTX

card, but slower when using the older 7900 card. These two specific algorithms

are examples of very different approaches to speeding up the MDS computation.

Given the current hardware trend of GPU speeds increasing more quickly than

CPU speeds, algorithms such as Glimmer that exploit GPU parallelism may have

an increasing speed advantage in the future.

The exception is again docs, where PivotMDS is faster than Glimmer even

when running on the 8800GTX. However, it produces visually uninformative re-

sults. For all other datasets that we tested, the two algorithms produce results of

comparable visual quality. PivotMDS and Glimmer are exemplars of two very

different approaches to MDS, and we now discuss the tradeoffs between those ap-

proaches more generally.

6.3 Comparing Distance To Classical Scaling

It is interesting to consider the advantages and disadvantages of distance scaling ap-

proaches that use stress such as Glimmer, GPU-SF, Chalmers, Hybrid, and SMA-

COF versus classical scaling approaches that use strain such as PivotMDS, Land-

mark MDS, and Classic.

In distance scaling, individual distances are computed in an embedding space

of specified dimension L. In contrast, classical scaling does not specifically param-

eterize embedding dimension. Layout in L dimensions occurs by simply choosing

the first L eigenvectors. If the intrinsic dimensionality of the layout is k, then k
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eigenvectors will contain layout information. By intrinsic dimensionality, we mean

the number of dimensions needed to achieve a layout where strain is zero6. When

k is greater than the desired embedding dimension (L = 2 in this thesis), classical

scaling implicitly uses more degrees of freedom in minimizing its objective func-

tion than distance scaling. The resulting layout may occlude points, clusters or

other features in lower dimensions.

We illustrate this phenomenon by embedding the endpoints of a regular sim-

plex. A simplex is a geometric object whose endpoints are all a distance of unit

length from each other. For example, a line segment is a regular 1-simplex and an

equilateral triangle is a regular 2-simplex. Figure 6.7 shows the results of embed-

ding a regular 100-simplex in two dimensions using classical scaling and distance

scaling. While there is no way to embed such a high dimensional object without

loss of some information, distance scaling constructs a layout without point occlu-

sion roughly the diameter of the simplex while classical scaling places most of the

points in a region much smaller than the simplex diameter.

The so-called curse of dimensionality [2] states that the majority of points sam-

pled in high dimensional space will be equidistant. That is, the volume of space ex-

ponentially increases as a function of dimension and the likelihood that two points

are close to each other becomes less and less. Thus data sampled in very high

dimensions is more likely to exhibit simplicial structure.

When the intrinsic dimensionality of the dataset is less or equal than the em-

bedding dimension, then classical scaling methods are likely to work very well.

Even if the dimensionality is greater, the greater likelihood of intra-cluster occlu-

sion may sometimes be advantageous, because clusters may be more easily distin-

6Distance gathering techniques like Isomap [28] may find even lower intrinsic dimensionality

layouts using more complex distance metrics than the Euclidean one we discuss. Our arguments still

apply in this case.
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guished from each other. However, we argue that for sparse, very high dimensional

datasets such as docs, distance scaling is probably a better choice than classical

scaling. The PivotMDS layout of the docs dataset shown in Figure 6.1, produced

by minimization of the strain objective, demonstrates that no two-dimensional or-

thogonal basis in the text-feature space can be constructed to visually separate the

relevant clusters. We consider the smearing of the ground-truth color coding into

disparate spatial regions to be evidence of the disadvantages of minimizing strain

when dealing with sparse datasets. To confirm this analysis, we tested the Pivot-

MDS algorithm on this dataset using 5000 landmarks, and the visual appearance

was not improved. We argue that algorithms based on distance scaling and ran-

dom search such as stochastic force, are more suited to visualizing these datasets.

Glimmer is the first such algorithm that can scale to sparse datasets of this size and

produce useful results in a matter of a dozen seconds.

6.4 GPU Speedup

Figure 6.3(a) shows the speedup of GPU-SF over the CPU-based Chalmers algo-

rithm. We now provide quantitative measurements of the GPU speedup for Glim-

mer. Figure 6.8 shows the running times in milliseconds for the Glimmer algorithm

on two different GPUs versus a completely CPU-based proof-of-concept imple-

mentation. Timings are shown for the synthetic grid dataset over several sample

sizes. Each implementation performs roughly the same number of computations,

allowing us to very directly gauge the magnitude of the GPU speedup. Figure 6.9

is a graph of the CPU timing values in Figure 6.8 divided by the GPU timings for

each cardinality. The speedup factors converge to a constant value for each GPU,

approximately 6 times faster on the 7900GS and approximately 30 times faster on

the 8800GTX. The two speedup factors do not conform to the precise number of
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processors per GPU which are 24 and 128 respectively. This discrepancy is due to

architectural differences between the individual CPU and GPU processors.

The GPU speedup comes with startup and overhead costs. These include

shader compilation, shader optimization, and data initialization-upload/download.

Figure 6.10 shows the costs in milliseconds for each of these steps on a variety

of sample sizes of the grid dataset. The GPU-SF and Glimmer layout times do

include the overhead of uploading data from the CPU to the GPU. Shader com-

pilation/optimization is a step required only once for any number of subsequent

layouts and thus is not included in any performance runtimes. For both GPU-SF

and Glimmer, shader compilation and initialization requires 4 seconds of dataset-

independent startup overhead when the program begins, which is not included in

any of our timings below. Similarly, we do not count startup times for MATLAB

itself or the Java VM for the other algorithms.
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cancer shuttle big grid docs

N=683 N=43,500 N=10,000 N=28,433

D=9 D=9 D=8 D=28,374

Glimmer

0.22 s stress=0.027 9.73 s stress=0.00675 1.89 s stress=1.67e-4 16.64 s stress=0.157

GPU-SF

0.22 s stress=0.027 2.44 s stress=0.206 1.31 s stress=1e-6 5.02 s stress=0.215

Hybrid

0.375 s stress=0.093 42.0 s stress=0.03 4.66 s stress=0.275 11.7 s stress=0.358

PivotMDS

0.094 s stress=0.194. 5.34 s stress=0.403 1.79 s stress=0 2.17 s stress=0.928

Figure 6.1: MDS layouts showing visual quality, time, and stress for the Glim-

mer, GPU-SF, Hybrid, and PivotMDS algorithms. Dataset name, number of nodes

(N), and number of dimensions (D) appear above each column. Time in seconds

appears at the bottom left of each entry, with normalized stress on the bottom

right.
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a) b)

Figure 6.2: Visual quality differences between a) Glimmer and b) GPU-SF for
grid instance with cardinality 8000. Glimmer exhibits more stable convergence
behavior than GPU-SF, which more frequently yields a twisted layout when it is
caught in a local minimum and terminates with a high stress value. This layout
corresponds to the spike at 8000 for GPU-SF in figure 6.3(a).
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Figure 6.3: grid Stress and Timing Graphs. (a) Seconds versus cardinality for
grid up to 10000 points. Chalmers (orange), SMACOF (blue), and Classic (pink)
are all orders of magnitude slower than faster approximation algorithms. While
GPU-SF appears to compute the fastest layouts, its layout quality is much lower
than Glimmer in most cases due to local minima. (b) Seconds versus cardinality
for grid up to 200000 points. Chalmers, SMACOF, and Classic are not visi-
ble at this scale. Again GPU-SF finishes fastest due to local minima, however
Glimmer on the 8800GTX card is second fastest with higher quality layouts. (c)
Normalized stress versus cardinality for grid up to 40000 points. Both Chalmers,
Hybrid, and GPU-SF are prone to distorted layouts registering above the heuristic,
dashed-black visible-distortion-line. Both PivotMDS and Classic are not visible
due to producing zero stress layouts.
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Figure 6.4: shuttle Stress and Timing Graphs. (a) Seconds versus cardinality
for shuttle up to approximately 10000 points. (b) Seconds versus cardinality
for shuttle up to 45000 points. (c) Normalized stress versus cardinality for
shuttle up to approximately 10000 points. We include a dashed black line to
indicate that all algorithms produce acceptable results, except GPU-SF. To show
where GPU-SF terminates with low-quality results at a local minimum, we use a
red dashed line.
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Figure 6.5: docs Stress and Timing Graphs. (a) Seconds versus cardinality for
docs up to approximately 10000 points. (b) Seconds versus cardinality for docs
up to 28433 points. (c) Normalized stress versus cardinality for docs up to ap-
proximately 10000 points.



Chapter 6. Results and Discussion 59

Cancer

0.01

0.1

1

1 10 100 1000 10000 100000

Time (ms)

N
or

m
al

iz
ed

 S
tr

es
s

Grid 1000 + Noise

0.01

0.1

1

1 10 100 1000 10000 100000

Time (ms)

N
or

m
al

iz
ed

 S
tr

es
s

Swissroll-1089

0.01

0.1

1

1 10 100 1000 10000 100000 1000000

Time (ms)

N
or

m
al

iz
ed

 S
tr

es
s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2000 4000 6000 8000 10000

Grid Cardinality

Ti
m

e 
(s

)

Glimmer (8800GTX) GPU-SF (8800GTX) Glimmer (7900GS) GPU-SF (7900GS) PivotMDS
Hybrid CPU-SF Classic SMACOF

Figure 6.6: Log-log scatterplots of stress versus time for the seven measured
MDS algorithms on cancer, swissroll, and grid1knoise datasets of increas-
ing cardinality. These graphs illustrate a stress-time tradeoff with distinct out-
liers Chalmers (orange) on the slower side of the tradeoff and GPU-SF (red) and
Glimmer (violet) on the side of the tradeoff with lower stress in shorter time. We
include a dashed black line to indicate the stress level at which cluster separation
is noticable.
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Distance Scaling Classical Scaling

Figure 6.7: Layouts of a regular 100-simplex produced by distance scaling and
classical scaling. Both methods distort the simplex. Distance scaling produces
less point occlusion and better preserves the diameter of the simplex.
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Figure 6.8: GPU vs. CPU speed, in seconds. We show Glimmer on two differ-
ent GPUs compared to a purely CPU-based implementation. The dataset is the
synthetic grid across a range of cardinalities. Glimmer was carefully designed to
fully exploit the possibilities of GPU parallelism in modern hardware, achieving
an order of magnitude speedup at 100,000 points.
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Figure 6.9: Glimmer GPU Speedup. By dividing the time required to complete a
layout using Glimmer on the CPU by the time required on a GPU, we can directly
calculate the speedup provided by the two graphics cards. The graph shows that
both cards converge to an approximately constant speedup factor.

startup (ms) overhead (ms)

Size Shdr. Comp Shdr. Opt Init+Upload Dload

20 3922 812 16 0
200 3891 797 31 0
2000 3875 797 15 0
20000 3859 813 47 0
200000 3875 813 312 16

Figure 6.10: Startup costs and texture overhead, in milliseconds. Shader com-
pilation and optimization are single-step startup costs that can be amortized over
many layouts. Texture initialization and data upload and download are costs in-
curred by an individual dataset, but this overhead is very small compared to over-
all runtime.
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Chapter 7

Conclusion and Future Work

Glimmer and GPU-SF provide dramatic speedups compared to previous distance

scaling approximation algorithms by exploiting GPU parallelism at every stage of

their architectures. Our new termination criterion for GPU-SF detects convergence

cheaply by approximating the normalized stress function. GPU-SF is roughly as

fast as Glimmer, but is more prone to getting caught in local minima, especially on

large datasets. The multilevel architecture of Glimmer is more likely to converge to

a lower stress embedding. Glimmer avoids the speed-accuracy tradeoff of previous

distance scaling approximation algorithms, as we have shown on a mix of synthetic

and real-world datasets. With distance scaling and distance paging, we avoid any

disadvantages that GPU texture memory restrictions may impose over CPU-based

MDS algorithms. It is competitive with previous classical scaling approximations

in speed, and yields higher quality results for sparse, high-dimensional datasets.

Glimmer should be straightforward to generalize from the current L = 2 imple-

mentation to handling target spaces of any dimension. The force calculation pass

at stage 5 of GPU-SF might be the main bottleneck, possibly taking more passes

as dimensionality increases. During the force calculation in step 5 of GPU-SF,

normalized velocity vectors are computed for damping purposes. We currently use

optimized shader instructions for calculating normalization factors. As the number

of embedding dimensions exceeds 3, these instructions are no longer applicable. A

general multipass scheme similar to step 2 of the algorithm must be used to calcu-
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late velocity vector length which would increase the number of passes for step 5

from 1 to log4 L.

We adapted the GPU-SF algorithm to perform force-directed graph placement

and called the algorithm GLUG [14]. GLUG makes three key changes to GPU-

SF. First, rather than fixed-size Near and Random index sets with dynamic en-

tries, we replaced these sets with two different index sets with fixed entires called

Near and Landmark. Users can control the size of the Near and Landmark sets

to respectively control the local and global fidelity of the graph layout. Second,

we initialize the contents of distHi as a CPU-based preprocess. Third, we use

the velocity-based termination condition rather than the sparse normalized stress

condition from Chapter 4.3. While the velocity termination is problematic, the

sparse normalized stress condition works well only in the context of a multilevel

approach and GLUG is a single-level algorithm. GLUG computes layouts with

superior speed and comparable quality to other state-of-the-art, graph placement

algorthms like FM3, but suffers from suboptimal results due to local minima and

the need to tweak velocity termination parameters. It would be interesting future

work to adapt the multilevel Glimmer approach for optimized force-directed graph

placement, to exploit the more robust sparse stress termination criterion and avoid

local minima.
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