
APPROVAL SHEET

Title of Thesis: GPU Random Walkers for Iterative Image Segmentation

Name of Candidate: Sean Peter Dukehart
M.S. in Computer Science, 2009

Thesis and Abstract Approved:
Dr. Marc Olano
Associate Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Sean Peter Dukehart.

Permanent Address: 155 E Green Street, Westminster, Maryland 21157.

Degree and date to be conferred: M.S. in Computer Science, Febrary 2009.

Date of Birth: May 16, 1981.

Place of Birth: Baltimore, Maryland, USA.

Secondary Education: North Carroll High School, Hampstead, Maryland.

Collegiate institutions attended:

University of Maryland Baltimore County, M.S. in Computer Science, 2009.

Salisbury University, B.S. in Computer Science, Summa Cum Laude, 2003.

Major: Computer Science.

Professional positions held:

Technical Lead, Social Security Administration. (July 2007 – Present).

IT Specialist, Social Security Administration. (July 2004– July 2007).

IT Specialist, Lockheed Martin. (August 2003 – July 2004).

ABSTRACT

Title of Thesis: GPU Random Walkers for Iterative Image Segmentation

Sean Peter Dukehart, M.S. in Computer Science, 2009

Thesis directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Image segmentation is the act of partitioning an image into distinct regions based on

properties that the pixels in those regions share, such as luminance, texture, or color. Image

segmentation finds application in fields ranging from medical imaging to computer vision,

all of which require the ability to distinguish contiguous regions. Based on user-specified

foreground and background “seed” pixels, the random walkers segmentation algorithm cal-

culates probabilities for pixel-placed random walkers “walking” across additional pixels

that they are connected to and arriving at one of the seeds. The probability is calculated

based on the variance of the shared property.

This thesis presents an algorithm to expand the usefulness of random walkers that pro-

vides the ability for interactive image segmentation and refinement. This approach mini-

mizes delays in visual feedback during segmentation through the use of iterative processes.

Starting with lower convergence thresholds leads to lower initial probabilities with less

definitive segmentations. As more seed points are added and more is known about the de-

sired segmentation, the system maintains interactivity for further refinements through dy-

namic convergence thresholding. To aid in this computationally intensive process, highly

parallel graphics processing units are employed. The implementation is developed as an

AdobeR© PhotoshopR© plug-in to enable comparison with other currently available image

segmentation techniques.

GPU Random Walkers for Iterative Image Segmentation

by

Sean Peter Dukehart

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
M.S. in Computer Science

2009

c© Copyright Sean Peter Dukehart 2009

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Marc Olano for his guidance and direction on

this work. I would also like to thank my family for their love,motivation and patience with

me as I focused so many of my efforts and so much of my time in thepursuit of this thesis’

completion. Without them, and the grace of God, this would have never been possible.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . xii

Chapter 1 INTRODUCTION . 1

1.1 Image Segmentation . 1

1.2 Technology . 4

1.3 Problem Area . 5

1.4 Contributions . 5

1.5 Organization . 6

Chapter 2 BACKGROUND AND RELATED WORK 7

2.1 Image Segmentation Overview .. 7

2.1.1 Magic Wand / Fuzzy Selection . 9

2.1.2 Intelligent Scissors / Magnetic Lasso 10

2.1.3 Bayesian Matting . 11

2.1.4 Graph Cuts . 12

2.1.5 GrabCut . 15

iii

2.1.6 Interactive Digital Photomontage 16

2.2 Random Walkers . 17

2.2.1 Random Walkers Algorithm . 18

2.2.2 Iterative Solvers . 23

2.2.3 Soft Scissors . 25

2.3 Graphics Hardware . 26

2.3.1 GPGPU Computing . 27

2.3.2 CUDA . 28

Chapter 3 APPROACH . 31

3.1 Initialization .33

3.2 Input . 37

3.3 Update . 38

3.3.1 Seeding . 38

3.3.2 Weighting / Laplacian Filling .39

3.3.3 Preconditioning . 41

3.3.4 GPU Iterative Solver . 42

3.3.5 Probabilities . 43

3.4 Output . 45

3.5 Application Interface .. 46

Chapter 4 RESULTS . 47

4.1 Validity . 47

4.2 Performance Considerations .. . 53

4.3 Base Performance . 59

4.4 Performance Comparison .62

iv

Chapter 5 CONCLUSIONS . 70

5.1 Limitations And Future Work .. 70

5.1.1 Edge Handling . 70

5.1.2 Flood Filling . 71

5.1.3 CUDPP Sparse Matrix Vector Multiplication 71

5.1.4 Different Iterative Solvers .. 72

5.2 Conclusion . 74

REFERENCES . 76

v

LIST OF FIGURES

1.1 An example of the compositing made possible by segmentation. Weather

anchors can stand in front of a green-screen background, andhave the uni-

form colored screen manipulated in image / video space as if it were a com-

pletely separate entity. This process, known as “chroma keying,” enables

weather maps to be displayed behind them as if the anchor werestanding

in front of what is actually a separate scene. 2

1.2 Using Interactive Digital Photomontage segmentation and restoration to

create a final composite image from multiple sub-images, where each indi-

vidual color overlay indicates the sub-image that a segmented region came

from (Agarwalaet al. 2004) . 3

2.1 How varying tolerance affects what is selected for segmentation using the

Magic Wand tool, where the same initial pixel was specified for each se-

lection. 10

2.2 An example selection using the Magnetic Lasso tool, where the user

roughly traced the outline of the figure in the image. 11

2.3 Example of a directed capacitated graph with edge costs reflected by thick-

ness of the edges(Boykov & Kolmogorov 2003). 13

2.4 Examples of regular neighborhoods used in 2D image processing (Boykov

& Kolmogorov 2003). 14

2.5 A visual overview of the multilevel banded graph cuts algorithm presented

by Lombaert et al. (2005). 16

vi

2.6 A visual representation of the random walkers input, where seed points

are represented byF & B, with question marks equating to unknown pix-

els. Possible outputs of the random walkers algorithm can beseen in the

next images, which equate to the probability that a random walker starting

from each node first reaches the foreground seed, and that a random walker

starting from each node first reaches the background seed. The foreground

and background segmentations (red and blue shaded regions)are shown for

clarity’s sake. 19

2.7 The Laplacian matrix for a 2D image employing a 4-connected neighbor-

hood has a very sparse structure, resulting in only 5 diagonals; the main

diagonal is the negative row sums of the secondary diagonals. As an exam-

ple of one of the sums on the main diagonal,L0,0 = d0 = w0,1 + w0,3 =

−(−w0,1 + −w0,3) = −(L0,1 + L0,3) (the negative row sum). Note that

Figure 2.7c represents the graph for a 3×3 image, with each gray box rep-

resenting an image pixel. The zeros shown in red fall within the secondary

diagonals, yet due to the structure of an image graph and its boundaries,

these indicate the absence of an edge and thus have zero edge weight. . . . 22

2.8 An extract using Power Maskc©Digital Film Tools, which implements the

Soft Scissors algorithm. Note that gray values in the matte indicate varying

percentages of alpha transparency. The blue background in the extracted

image is there for contrast purposes. 26

3.1 An overview of the GPURW method. 32

vii

3.2 Compressed row storage for an image-based Laplacian matrix, with ad-

ditional convenience vectors for on-the-fly kernel-based calculation of the

Laplacian. Note that letters are used in place of zero-basedindices for

clarity’s sake. Since the graph is undirected, the Laplacian is symmetric,

with corresponding indices represented by like-colored boxes inL and like-

colored lines in the image graph. .35

3.3 Different outputs of the Random Walkers process. 44

4.1 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. The2nd & 3rd rows show GPURW foreground

/ background probabilities for the Jacobi fixed-point solver with 800 iter-

ations (A), the Jacobi conjugate gradient solver with 300 total iterations

at 10 iterations perUpdate pass (B), the Jacobi conjugate gradient solver

with 300 iterations from a singleUpdate pass (C), and finally the Jacobi

conjugate gradient solver with 750 iterations (D - convergence). The final

row shows segmentations for the corresponding test-cases.. 48

4.2 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. The center circle is50% gray. GPURW fore-

ground / background probabilities with segmentations are shown for the

Jacobi fixed-point solver with 510 iterations (A), the Jacobi conjugate gra-

dient solver with 260 iterations (B), and finally the Jacobi conjugate gradi-

ent solver with 3Update passes at 850 iterations per pass (C - convergence). 50

viii

4.3 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. The center circle is50% gray. GPURW fore-

ground / background probabilities with segmentations having two fore-

ground and one background seeds are shown for the Jacobi fixed-point

solver with 4490 iterations (A), the Jacobi conjugate gradient solver with

270 iterations (B), and finally the Jacobi conjugate gradient solver with 2

Update passes at 370 iterations per pass (C - convergence). 51

4.4 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. The center circle is50% gray. GPURW fore-

ground / background probabilities with segmentations having two fore-

ground and one background seeds are shown for the Jacobi fixed-point

solver with 700 iterations (A), the Jacobi conjugate gradient solver with

195 iterations (B), and finally the Jacobi conjugate gradient solver with

500 iterations (C - convergence). Differently located (more closely placed)

seeds allow segmentations / convergence equal to Figure 4.3after fewer

iterations. 52

4.5 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. GPURW foreground / background probabilities

with segmentations are shown for the Jacobi fixed-point solver with 75000

iterations (A), the Jacobi conjugate gradient solver with 1530 iterations

(B), and finally the Jacobi conjugate gradient solver with 2920 iterations

(C - convergence). 55

ix

4.6 Comparison of GPURW outputs to outputs of Grady’s (2006)MATLAB

code run to convergence. GPURW foreground / background probabilities

with segmentations having four foreground and five background seeds are

shown for the Jacobi fixed-point solver with 17650 iterations (A), the Ja-

cobi conjugate gradient solver with 700 iterations (B), andthe Jacobi con-

jugate gradient solver with 1510 iterations (C - convergence). More seeds

allow segmentations / convergence equal to Figure 4.5 afterfewer iterations. 56

4.7 Probability images (Foreground 1 - 7) and the amount of difference be-

tween one probability image and the successive probabilityimage. All im-

ages were generated using the GPURW algorithm with a Jacobi conjugate

gradient solver. The solver went through the image number (Foreground

1 = 1 ... Foreground 7 = 7)Update passes at 100 iterations per pass. The

trimap equates to white being labeled as foreground seeds, black as back-

ground seeds, and gray being left as unknown to be solved for.. 57

4.8 Plotted statistics from Table 4.1, showing the correlation between the log-

arithmic scaling of memory use and time-to-segment with thelogarithmic

changes in image size. 61

4.9 Comparisons of different segmentation methods. Segmentations can be

seen in the top two rows (the amount of time required for the segmentation

in seconds is shown next to the name of the algorithm), while the inputs

required to create the segmentations in their respective interface can be

seen in the bottom row. Red strokes equate to foreground markings, blue

to background, and yellow represent explicit-boundary indications. The

boxes with dashed lines in the segmentation image are enlarged in Figure

4.10, with the blue seen on the left, and the red on the right. 64

x

4.10 Comparisons of specific regions of different segmentation methods. The

left side of each image is an enlarged version of the blue dashed box seen

in Figure 4.9, while the right is for the red dashed box in the same Figure.

The left side shows a region of the segmentation that perceptually should

be a distinct hard edge running along the top of Lena’s hat. The right side

shows a region comprised of the feather from Lena’s hat, which presents

the challenge of semi-transparency. 65

4.11 Comparison of returning a matte based solely on the foreground probabil-

ities, versus returning the hard segmentation matte that GPURW returns.

The results have been cropped to allow for greater visible distinction. The

base-image comes from Grady (2006). .67

4.12 Comparisons of different segmentation methods on a cropped region of a

closely textured CT Scan (the amount of time required for thesegmentation

in seconds is shown next to the name of the algorithm). The inputs required

to create the segmentations in their respective interface are shown imme-

diately below the segmentation results. Red strokes equateto foreground

markings, blue to background, and yellow represent explicit-boundary in-

dications. 69

5.1 Use of an unpreconditioned CG solver yielding ripple effects. Due to con-

vergence never being reached, an iteration threshold (imax) of 20 iterations

perUpdate was imposed. Modifying the seed painting brush to paint seeds

on a checkerboard pattern (i.e., no adjacent seeds), the unpreconditioned

CG solver was rendered usable. Due to the reduced number of seeds caused

by preventing seed adjacency, the calculation ofτ was affected and user-

initiated refinements were necessary. 73

xi

LIST OF TABLES

4.1 Statistics pertaining to GPURW for the Lena female imageat different res-

olutions. Note that the device memory consumption indicates total memory

being used by the GPU. Thus, there is constant memory in use due to the

GPU additionally functioning as the primary display adapter (the operat-

ing system accounts for this constant allotment of≈ 57.2 MB for general

display purposes). 61

xii

Chapter 1

INTRODUCTION

Segmentation is the process of identifying different pieces or groupings of similar in-

formation from a larger collection of information. The problem of segmentation appears in

a number of contexts—for example, volume segmentation offers doctors the ability to ex-

tract a model of an individual’s aorta or other internal structures from cardiac CT (computed

tomography) volume data (Sherbondy, Houston, & Napel 2003). With video segmentation,

it is possible to track objects through several frames and toplace these objects into a new

scene (Wanget al. 2005). Although segmentation problems arise in many fields,the focus

of this paper is on the application of segmentation to imaging. With the advent of digital

cameras, high-resolution scanners, and a multitude of other digital imaging input devices,

the challenge has arisen of what to do with the images that they produce and the informa-

tion that these images contain. It has become increasingly important to develop tools and

processes for extracting this information.

1.1 Image Segmentation

In controlled situations such as video chroma keying, extracting the foreground region

from a uniformly colored background is straightforward (see Figure 1.1). It is feasible to

require a uniform background behind a television weather anchor, but many segmentation

1

2

(a) Green Screen (b) Segmentation

(c) Newly Composited Scene

FIG. 1.1. An example of the compositing made possible by segmentation. Weather anchors
can stand in front of a green-screen background, and have theuniform colored screen ma-
nipulated in image / video space as if it were a completely separate entity. This process,
known as “chroma keying,” enables weather maps to be displayed behind them as if the
anchor were standing in front of what is actually a separate scene.

3

(a) Montage Segments (b) Final Composite

FIG. 1.2. Using Interactive Digital Photomontage segmentation and restoration to create
a final composite image from multiple sub-images, where eachindividual color overlay
indicates the sub-image that a segmented region came from (Agarwalaet al. 2004)

situations are not so flexible. For instance, a tumor or cancerous region in a medical image

is in many ways similar to the surrounding non-cancerous regions. The problem of breaking

the underlying image into more meaningful parts based on what would be defined as objects

and boundaries is exceedingly challenging. Difficulties include noise, similarity of texture

between objects, semi-transparent foreground objects such as hair, and under-constrained

problem specifications. The ultimate goal is to overcome these difficulties and to glean

quantifiable information from images through theimage segmentationprocess.

Image segmentation is used in fields ranging from face and fingerprint detection, to

advertising, to machine vision. As can be seen in Figure 1.2,it has been used in composi-

tion, enabling a single image to be created from a montage of aligned images. This process

permits desired parts of multiple images to be combined intoa final composite that shows

an “ideal” scene. Image segmentation and volume segmentation are more commonly used

4

in the medical field, permitting object boundaries in x-raysor scans to be distinguished that

would otherwise be extremely difficult to differentiate.

1.2 Technology

In 1965, “Moore’s Law” (Moore 1965; Moore 1975) predicted a doubling of the num-

ber of transistors in electronic components every two years, an increase that has continued

through the present day. However, the maximum throughput ofmodern-day CPUs has

met a number of bottlenecks, so that performance no longer tracks with the exponential

growth in transistor count. As more transistors are added toa smaller and smaller space,

interconnections and power consumption limit how quickly new processors can perform.

As a result, processor manufacturers have moved to multi-core parallel computing (Intel

2005). The notion is that if tasks can be broken down into parallel parts, more can be

done in the same span of time, thus increasing throughput andallowing for improved per-

formance. This observation has resulted in dual and quad core processors from the major

CPU manufacturers trying to leverage the opportunities that parallelization affords.

Although CPUs have seen a great deal of improvement from thisparallelization, to-

day’s GPUs (Graphics Processing Units) found in consumer-level video cards already have

inherent parallel computing pathways built in. Since a graphics card’s purpose is to rapidly

generate display information, it is designed for sending a screen’s worth of pixel informa-

tion to the monitor 30 or more times per second. The approach that GPUs have taken is

to employ parallel pathways for the generation of pixel information. This has resulted in

a significant increase in the amount of processing that can bedone concurrently. When

processes utilize the available parallelism of the processor, certain classes of problem gain

huge increases in performance.

Comparing the 51.2 peak Gigaflops of Intel’sR© current top-of-the-line 3.2 GHz

5

QX9775 CoreTM 2 Extreme CPU (Intel 2008) to the 230.4 peak Gigaflops of the 2-year-

old NVIDIA R© GeForceR© 8800 GTS GPU used for this thesis (Charpentier 2007), it is clear

that in terms of floating point throughput, the GPU comes out the winner. With current

GPUs breaking the Teraflop barrier (AMD 2008b), as well as their pervasive use of more

and more silicon (upwards of 1.4 billion transistors (NVIDIA 2008b)), the power and per-

formance of the modern-day GPU will continue to be a major selling point for moving

away from the CPU and into the much more parallel world of GPU computing.

1.3 Problem Area

As technology advances and processing power increases, there is a necessity to de-

velop algorithms that were previously not feasible due to hardware restrictions. Today’s

most accurate single-image segmentation algorithms are too slow for true interactive use

(Boykov & Kolmogorov 2003; Agarwalaet al. 2004; Grady 2006). Other algorithms are

designed for interactivity, but give lower-quality results (Mortensen & Barrett 1995). There

is a gap between speed and accuracy-motivated solutions to the segmentation problem.

With hardware continually becoming less of a restriction towhat algorithms are possible,

new approaches to interactive single-image segmentation that fill this gap are possible.

1.4 Contributions

The GPU-based random walkers segmentation method presented in this thesis, or

GPURWas it will be referred to herein, extends the random walkers image segmenta-

tion algorithm (Grady & Funka-Lea 2004) (the standard algorithm is discussed in Section

2.2). GPURW is an interactive segmentation algorithm for single images that allows fore-

ground / background objects for a given image to be distinguished. It presents a parallel

solution for filling the speed-accuracy gap, providing an algorithm that is both fast and ac-

6

curate. Other systems have sought to produce high-quality results after initial segmentation

or at each user interaction point, but are based on minimal knowledge of a user’s desire.

This can lead to results that fail to match what the user actually wanted. The GPURW

approach uses accumulated accuracy; as the system learns more about a user’s intentions,

the segmentation will more closely match their target segmentation.

GPURW is implemented using NVIDIAR© CUDATM (Compute Unified Device Archi-

tecture) technology for doing general-purpose processingon the highly parallel graphics

processing unit, also known asGPGPU(General Purpose Graphics Processing Unit) com-

puting. The algorithm is incorporated into an AdobeR© PhotoshopR© plug-in to present a

standard testbed for comparison with other current solutions to the image segmentation

problem.

The GPURW algorithm produces segmentations that equal those of the standard ran-

dom walkers algorithm; the distinctions are that GPURW doesso interactively, and does

not require being run to the standard algorithm’s level of convergence. It provides imme-

diate visual feedback on the current segmentation, producing segmentations in comparable

time to other Photoshop segmentation plug-ins. The resultant segmentations are as good or

better than those produced by other binary (object / not object) segmentation methods.

1.5 Organization

Chapter 2 examines image segmentation approaches and algorithms, in particular the

random walkers image segmentation algorithm, and presentsthe relevance of graphics

hardware to the GPURW algorithm. Chapter 3 describes how this particular approach

to image segmentation was designed and implemented. Chapter 4 presents the results and

considerations. Finally, Chapter 5 discusses limitationsof the approach, examines areas

that might be fruitful for future work, and presents conclusions.

Chapter 2

BACKGROUND AND RELATED WORK

This chapter describes technical concepts that must be understood for the remainder

of the thesis. Prior work in the field of image segmentation isdiscussed, and the technology

needed for the implementation outlined in Chapter 3 is presented.

2.1 Image Segmentation Overview

Image segmentationis the decomposition of an image into meaningful parts. Segmen-

tation can be expressed as a selection, a definitive extraction, or a matting of some part of

an image. The number of possible segmentations of ann-pixeled image into0 ≤ m ≤ n

distinct labellings ismn. With such an immense number of possible ways to partition the

image, the question becomes how to identify the “right” partitions that present the desired

meaning. Since meanings are generally perceptual in nature(Is a person’s clothing part of

the person? Is a license plate defined by the outline of the plate or by the letters and num-

bers?), it is increasingly important to recognize that there is not generally a single “correct”

partition. Rather, the task is to partition the image into the best approximation of the user’s

desired meaning.

Falcão et al. (1998) indicated that a segmentation must be repeatable, accurate and

efficient. Grady (2006) extended this assertion by indicating that for an image segmentation

7

8

algorithm to be a practical solution, the following must hold true:

1. It must be fast to compute.

2. It must allow for fast editing.

3. It must produce intuitive segmentations.

4. There must be the ability to produce arbitrary segmentations with enough interaction.

Although the definition offast can be debated, the general premise was that a user of an

image segmentation algorithm should not have to provide initial input for a segmentation

and then return days later to see a result. Since they could have interacted with the algorithm

incorrectly or unintentionally, there must be relatively immediate indications of the results

of their action so that refinements can be made.

There are three generally accepted classes of segmentation: manual, automatic and

semi-automatic. The manual pathway requires complete userinvolvement; that is, the

only parts of the image to be selected for segmentation are those that the user has directly

chosen. Examples of this approach include individual pixelor explicit region selection, as

can be seen in the rectangular, elliptical, or other shape-based selection and free selection

tools found in nearly every image-editing suite. Automaticapproaches exist but are nearly

always specialized to handle a very specific type of object, such as license plates (Acosta

2004) or classes of objects learned from previous user interactions (Lee & Street 2000).

In contrast, semi-automatic approaches involve varying amounts of user interaction.

The first class of semi-automatic segmentation approaches,known asseed-basedsegmen-

tation, requires points to be specified as either inside or outside the boundaries of objects

(Boykov & Jolly 2001; Lombaertet al. 2005; Grady 2006). A second class of methods

deals with explicitly indicating object boundaries, and issometimes referred to asbound-

ary tracing (Mortensen & Barrett 1995; Wang, Agrawala, & Cohen 2007). There is also

9

a third approach, which involves indicating a bounding shape around an object (Rother,

Kolmogorov, & Blake 2004). This approach inherits from bothseed-based and boundary

tracing methods. These semi-automatic approaches encompass nearly all recent work in

image segmentation.

2.1.1 Magic Wand / Fuzzy Selection

Both Adobe Photoshop’sMagic Wand(Adobe 2008)1 and GIMP’sFuzzy Selection

(GIMP 2008) tools can be thought of as color similarity tools. They can be likened to the

region-growing methodologies of Haralick (1985), which were based on pixel intensities.

A user clicks on a starting pixel in the image and nearby pixels with colors similar to the

starting point are selected. This seed-based approach enables segmenting an image into

regions of similar color that can be (but are not required to be) contiguous. Thus, either

solid objects or spans of like color across an image can be selected.

One of the key elements to this style of segmenter is the use ofa threshold or tolerance

that dictates how close similar pixels must be to the specified starting pixel in order to be

included in the segmentation (see Figure 2.1). As this tool most often finds use on large

sections of like color, a user can select a variety of different pixels in semi-uniform sections

that would result in the same segmentation. To prevent results like those seen in in Figure

2.1c, painstaking attention must be paid to the tolerance that is specified. In addition to

varying the tolerance, anti-aliasing of the edge regions ofthe segmentation is often an

option. The color similarity tool is most useful when imageshave distinct edges, since

with tolerance adjustments, the segmentation can be restricted to include everything up to

those edges.

1According to Schewe (2000), the Magic Wand tool has been included in Photoshop since the 0.87 Alpha
release of the product in 1988.

10

(a) 10% tolerance (b) 30% tolerance (c) 60% tolerance

FIG. 2.1. How varying tolerance affects what is selected for segmentation using the Magic
Wand tool, where the same initial pixel was specified for eachselection.

2.1.2 Intelligent Scissors / Magnetic Lasso

Another segmentation tool found in many image editing suites is theIntelligent Scis-

sors(Mortensen & Barrett 1995) or, as Photoshop has labeled it, theMagnetic Lassotool

(Adobe 2008)2. It is based on Mortensen & Barrett’s (1995)Live-Wireboundary snapping.

The idea is that a segmentation boundary “wire” or line snapsto object boundaries within

a given proximity to the interest point (normally the mouse or stylus position). This ap-

proach allows a user to interactively select the most suitable boundary from a set of possible

boundaries. The goal is to produce boundaries that are of thelowest localcosts, where cost

is measured by the gradient magnitude of the image. Thus, thelive-wire is attracted toward

strong edge features. Additionally, the path’s cost is determined by the interest point’s

proximity to previously selected path elements and potential future elements. Section 2.1.4

gives a more detailed explanation of what the termcost means in the context of image

segmentation.

2According to Adobe (1998), the Intelligent Scissors tool was incorporated into the Photoshop 5.0 release.

11

(a) Beginning Selection (b) Continued Selection (c) Final Selection

FIG. 2.2. An example selection using the Magnetic Lasso tool, where the user roughly
traced the outline of the figure in the image.

While this method works well for images that have distinct edges, it has trouble when

trying to segment highly textured or untextured regions dueto the many low-cost paths,

which can result in an increase in the amount of necessary user interactions. This can be

seen at the bottom of the segmentation in Figure 2.2c, where no distinct edge existed.

2.1.3 Bayesian Matting

The “trimap” approach to image matting and segmentation wasintroduced by Chuang

et al. (2001), based on the alpha estimation work of Ruzon andTomasi (2000) and prior

alpha channel work of Porter and Duff (1984). The concept of atrimap is used to initially

distinguish between foreground, background, and unknown regions of an image. There

then occurs a hard segmentation over distinctly foregroundor background regions, with the

unknowns resulting in varying alpha values to represent thedegree to which an unknown

pixel belongs to either the foreground or the background. This algorithm models color

distributions probabilistically, and allows for the creation of high-quality mattes.

12

2.1.4 Graph Cuts

A number of image segmentation algorithms treat images as graphs, with pixels being

equated to vertices / nodes. The following notation will be used to describe a graph:

G = (V, E) G is a graph;V is a vertex set;E is an edge set

v ∈ V v is a vertex

e ∈ E ⊆ V × V e is an edge

vi

ei,j

←→ vj ei,j is the edge betweenvi andvj

wi,j = w(ei,j) wi,j is the weight of edgeei,j

Graph cutting, a segmentation algorithm that uses image graphs to achieve a desired

segmentation, is a building block for a number of other segmentation approaches. The set

of all pixels in an image are treated as vertices inV , with two or more additional special

vertices calledterminals, labeled in Figure 2.3b assourceandsink. These terminals corre-

spond to the set oflabelsthat can be assigned to pixels. In terms of image segmentation,

foreground and background terminals can be defined in order to distinguish a foreground

element or object in the image from its surroundings. To allow a user to specify which

parts of an image should be a part of the foreground or background, the user is often given

the option of specifyingseedpoints on the image that correspond to a specific label. These

seed points influence surrounding pixels’ likelihood of also being associated with the seed’s

label.

Graph vertices for adjacent image pixels are connected by edges, where every edge

in the graph is defined to have some non-negativeweightor cost. The edge weight can be

derived from the color or luminance difference between two pixels, but can also take on

more complex forms, such as those used by the “imaging objectives” of Agarwala et al.

13

B

O

(a) Image with Seeds

sink

source

qp

s

t

(b) Graph

source

sink

cut

qp

s

t

(c) Cut (d) Segmentation

FIG. 2.3. Example of a directed capacitated graph with edge costs reflected by thickness
of the edges(Boykov & Kolmogorov 2003).

(2004), as discussed further in Section 2.1.6. If the graph is undirected, the cost of the edge

going fromvi to vj will equal the cost of the edge going fromvj to vi. It is often sufficient

to calculate and store undirected edge weights, in which case a connection between two

pixels can be stored efficiently using a single value. However, in some cases, a directed

graph is desirable. In those instances, moving from pixel topixel in each direction requires

its own weight calculation and storage. A case where directed graphs are appropriate is

when cost is to be calculated based on gradients, and moving in one direction across the

gradient is more desirable than the other. The edge from a dark pixel to a lighter pixel

might have a lower cost than the higher cost of an edge from a light to a dark pixel.

It is not necessary for a pixel to only have edges between it and its immediate neigh-

bors. More general cases use some measure of proximity to determine whether or not an

edge exists between pixels. Figure 2.4 shows several possibilities for different neighbor-

hood sizes and the resulting structures. Varying neighborhood sizes find use in many parts

of the imaging field, from anti-aliasing and filter kernels, to texture synthesis (Efros &

Leung 1999; Wei & Levoy 2000; Hertzmannet al. 2001).

Once a graph has been created for an image, it is decomposed into n disjoint sets,

14

(a) 4-Connected Neighborhood (b) 8-Connected Neighborhood (c) 16-Connected Neighborhood

FIG. 2.4. Examples of regular neighborhoods used in 2D image processing (Boykov &
Kolmogorov 2003).

where each terminal appears in a different set, along with a subset of the pixels inV . The

aim of graph cutting is to minimize the cost ofcutting edges between nodes. For both

directed and undirected weighting, the cost of acut between two pixels is the sum of all of

the edges that are severed due to the cut, or more formally:

∑

wx,y ∀ex,y wherex 6= y; x, y ∈ {i, j}. (2.1)

This leads to themin-cutmethodology, where edge weights are thought of as energy,

and the goal is to find the minimum cut that can be made, among all possible cuts that

would separate the graph into then disjoint sets. Another name for this approach isenergy

minimization. The corollary to min-cut ismax-flow, in which every edge’s weight is thought

of as having some flow potential. Max-flow methods seek to retain the connections that

allow for the greatest flow for each of the disjoint sets. Min-cut and max-flow are equivalent

formulations.

The idea of using graph cuts for image segmentation is a relatively new concept, first

15

introduced by Boykov & Jolly (2001). The “Max-Flow” algorithm has found adoption

and expansion, with significant improvements being made to the initial Ford & Fulker-

son (1956) approach of “Augmenting Paths,” and the “Push-Relabel” implementation by

Goldberg-Tarjan (1988). Max-Flow has seen application in the field of texture synthesis in

the work of Kwatra et al. (2003), with an increased performance implementation developed

by Boykov & Kolmogorov (2002) opening the door for more interactive opportunities in

the graph-cutting of images. They were able to reduce multiple-minute computations down

to just a few seconds.

Lombaert et al. (2005) presented a novel enhancement to graph cutting calledMulti-

level Banded Graph Cuts, which significantly reduces computation time while decreasing

the memory footprint for image segmentations. As can be seenin Figure 2.5, their approach

involvescoarsening, initial segmentation, anduncoarseningstages. The coarsening stage

simplifies the image as well as the seed points. Once a certaincoarseness threshold is

reached, a standard graph-cutting algorithm is run on the coarsened image to produce an

initial segmentation. Uncoarsening translates the initial segmentation to the next level of

coarseness (the next level closer to the actual image) and runs a constrained refinement on

a band of pixels surrounding the segmentation boundary, adjusting the boundary locally.

Uncoarsening is an iterative process that continues until the original image level has been

reached.

2.1.5 GrabCut

Rother et al. (2004) presented a system that utilizes graph cuts in a novel segmen-

tation framework. The user is tasked with specifying a roughbounding box around an

image object that they wish to segment out of the image. In doing so, the user provides

multiple background seeds (the four corners of the boundingbox), which enables an initial

energy minimization to produce a “hard” binary segmentation of the image. The initial seg-

16

Level K
(coarsest level)

Full Grid Graph
 at level K

Solve Graph Cut
at coarsest level

Solve Graph Cut
on banded graph

at level K-1

Level K-1

From Level K-2 To Level K-2

Minimum Cut C K

Object Seeds

Background Seeds

Minimum Cut C K-1

Im
ag

e
C

oa
rs

en
in

g G
ra

p
h

U
n

co
a

rsen
in

g

IK-1

IK

FIG. 2.5. A visual overview of the multilevel banded graph cuts algorithm presented by
Lombaert et al. (2005).

mentation is followed by running the edges of the segmentation through a border matting

algorithm to determine alpha values (modifying the segmentation from binary (object vs.

not object) into amatte(object, not object, and partially object)). The partiallyobject pixels

are given a calculated color estimate and an alpha value so that when the matte is placed

in a different scene, that new scene affects those partiallyobject pixels. The user is then

permitted to refine the matte by explicitly specifying foreground or background sections.

2.1.6 Interactive Digital Photomontage

Agrawala et al. (2004) presented a use of the graph-cutting method that enables a

single composite image to be made from the preferred parts ofother images (see Figure

1.2). They did so through “imaging objectives” such asdesignated color, designated im-

age, minimum / maximum luminance, minimum / maximum contrast, minimum / maximum

likelihood, or minimum / maximum difference. These high-level objectives effectively pro-

17

duce varying energy functions for use in the edge weight calculation. Unlike other image

segmentation schemes, edges exist not only between adjacent pixels in a single image, but

also between aligned pixels in a stack of images. For a stack of n images, there are potential

edges between the correspondingvi for all n images (e0,1
i between images 0 and 1 ...e0,n

i

between images 0 andn), with different weights for each of those edges.

This framework allows for interesting effects such as time-lapsed photography from

multiple separate still frame images, where an individual’s position melds from a starting

position in the first picture to where they end up in each subsequent picture. This process

shows motion across all blended images. Additionally, images taken with different depths

of field can be merged into a single “extended depth-of-field”image with all objects ap-

pearing in focus. Another effect is the ability to take multiple images and use only desired

parts of each one (see Figure 1.2), which is useful in situations where multiple pictures of

a particular scene exist, in which people or objects occludepart of the view. Using this

image objective allows a final composite to be created from the parts of each picture where

no occlusion occurs.

Some of these high-level objectives are extremely powerful. However, the time it takes

to calculate a result across multiple images is a function ofnot only how many images are

present, but also their sizes and which objective was chosen. Extending the algorithm with

Multilevel Banded Graph Cutsenabled the images in Figure 1.2 to be generated approxi-

mately two to three times faster than the original implementation allows.

2.2 Random Walkers

The random walkers algorithm represents a different formulation than the aforemen-

tioned segmentation approaches. It calculates probabilities for pixel-placed random walk-

ers “walking” across a series of connected pixels, creatingpaths of connectivity to one of

18

the specified seeds. For the non-seed pixels of an image—pixels that have yet to be associ-

ated with a particular label—this algorithm determines theprobability that a random walker

starting at the given pixel first reaches each of the seed pixels. Seed pixels are defined to

belong to a particular labeling. For a given labelings, the probabilities for all seed pixels

of that labeling can be calculated as a single system of equations. The resultant probabili-

ties,xs for labelings, are visualized for foreground / background labellings in figures 2.6b

& 2.6c respectively. As can be seen from these Figures, each pixel becomes part of the

segmentation for the labeling that it has the greatest probability of reaching.

Grady & Funka-Lea (2004) first presented the random walkers algorithm as an ap-

proach to the image segmentation problem, allowing for multi-label segmentations. While

Figure 2.6 shows a binary segmentation of foreground / background labellings (this thesis

takes the binary segmentation approach as well), the randomwalkers algorithm is capable

of handling an arbitrary number of labels. Grady et al. (2005) then presented the algo-

rithm’s application to alpha matting. These works, as well as Grady’s (2006) outlining of

some of the beneficial properties of the random walkers algorithm (the abilities to handle

weak boundaries, function even when image noise is present,and deal with ambiguous un-

seeded regions), have resulted in unique applications of the algorithm, such as the one seen

in Section 2.2.3.

2.2.1 Random Walkers Algorithm

While the concept of random walkers has been applied to the 3-dimensional segmen-

tation of volume data (Grady 2006), the focus here is on its application to 2D images. In

19

? ? ? ?

B ? ? ?

? ? ? F

? ? ? ?

(a) Seed Points

.53 .64 .75 .84

.60 .90

1

0 .05

.06 .11 .24

.11 .16 .38 .45

(b) Foreground Probabilities

.47.36.25.16

1.95.40.10

.94.89.760

.89.84.62.55

(c) Background Probabilities

FIG. 2.6. A visual representation of the random walkers input, where seed points are repre-
sented byF & B, with question marks equating to unknown pixels. Possible outputs of the
random walkers algorithm can be seen in the next images, which equate to the probability
that a random walker starting from each node first reaches theforeground seed, and that a
random walker starting from each node first reaches the background seed. The foreground
and background segmentations (red and blue shaded regions)are shown for clarity’s sake.

this context, each image pixel will be represented by a graphvertex:

vi = pixeli ith pixel of specified image

wi,j = exp

(

−
‖gi − gj‖

2

σ2

)

Gaussian weighting function (2.2)

di =
∑

wi,j degree;∀ei,j incident onvi, (2.3)

wheregi is some measurable property ofvi (in the case of images,gi is generally either

color, intensity, texture, or luminance). Note that the value ofσ (a weighting parameter) is

the only free parameter in this equation. Ifσ is constant, theσ part of Equation 2.2 can be

20

simplified to a product. Specifically, the weighting calculation can be reduced to:

β =
1

σ2
(2.4)

wi,j = exp(−β ‖gi − gj‖
2). (2.5)

As outlined by Grady (2006), the random walker probabilities have the same solution

as the combinatorialDirichlet problem. He indicated that “the solution to the combinato-

rial Dirichlet problem on an arbitrary graph is given exactly by the distribution of electric

potentials on the nodes of an electrical circuit with resistors representing the inverse of the

weights (i.e., the weights represent conductance) and the ‘boundary conditions’ given by

voltage sources fixing the electric potential at the ‘boundary nodes.’ ” In Figure 2.6, the

jagged lines between nodes represent these resistors / weights. Grady’s use of the term

“boundary nodes” (visualized asF & B in Figure 2.6a) refers to the seed pixels, where the

“boundary conditions” are functions that are applied at those pixels (see Equation 2.8).

The purpose of the Dirichlet problem here is to find a functionthat satisfies this set

of boundary conditions for a given image / weighting. In the case of the random walkers

algorithm, the Dirichlet problem seeks to find the non-boundary values (unknown pixels’

random walker probabilities) for the Laplacian matrixL. L, which is indexed by vertices

vi andvj (Dodziuk 1984), is defined as:

Li,j =

di if i = j,

−wi,j if vi andvj are adjacent nodes,

0 otherwise.

(2.6)

The Laplacian matrix is used as a way to represent the connectivity of a image. Negative

weights give the affinity of a pixel to its neighbor. Elementson the diagonal are the accu-

mulated weights for all neighbors connected to a particularpixel. Elements where no pixel

21

connectivity exists are zero. A visual representation of a Laplacian matrix can be seen in

Figure 2.7b for a general graph and in Figure 2.7d as it specifically applies to an image

graph, where
∑

has been used to indicatedi.

Unlike graph cuts, this algorithm does not employ terminals. Instead, vertices are

considered either marked or unmarked, where marked vertices equate to the seed pixels.

V is partitioned intoVM (the marked pixels) andVU (the currently unmarked pixels), such

thatVM ∪ VU = V andVM ∩ VU = ∅. Note thatVM contains all of the marked seed pixels,

regardless of which label they have.L can be reordered to reflect this partitioning:

L =

LM B

BT LU

 . (2.7)

Probabilities need to be found for the unmarked portion of the Laplacian matrix,LU , since

the labellings for the marked seed pixels are already known.

K is defined to be the number of labels, withs equating to a particular labeling.

Determining the Dirichlet boundary conditions for seed point vi can then be defined as a

functionQ(vi), ∀vi ∈ VM , wheres ∈ +Z, 0 < s ≤ K.

ms
i =

1 if Q(vi) = s

0 if Q(vi) 6= s
(2.8)

The solution to the combinatorial Dirichlet problem, whichequates to the desired

random walker probabilities for unknown / unseeded pixels,can be found by solving the

large, sparse, symmetric, system of linear equations for each labels:

LUxs = −Bms. (2.9)

For a given labels, the probability of pixelvi being part of labelings is xs
i for non-seed

22

0 51

4
3

2

1
1

1

11
1

3

(a) Weighted Undirected Graph

L =

 2 -1 0 0 -1 0

 -1 3 0 -1 -1 0

 0 0 2 -1 -1 0

 0 -1 -1 5 0 -3

 -1 -1 -1 0 3 0

 0 0 0 -3 0 3

(b) Laplacian Matrix for 2.7a

20 1

53 4

86 7

(c) 2D Image Graph

L =

 ∑ -w0,1 0 -w0,3 0 0 0 0 0

 -w1,0 ∑ -w1,2 0 -w1,4 0 0 0 0

 0 -w2,1 ∑ 0 0 -w2,5 0 0 0

 -w3,0 0 0 ∑ -w3,4 0 -w3,6 0 0

 0 -w4,1 0 -w4,3 ∑ -w4,5 0 -w4,7 0

 0 0 -w5,2 0 -w5,4 ∑ 0 0 -w5,8

 0 0 0 -w6,3 0 0 ∑ -w6,7 0

 0 0 0 0 -w7,4 0 -w7,6 ∑ -w7,8

 0 0 0 0 0 -w8,5 0 -w8,7 ∑

(d) 2D Image Laplacian Matrix

FIG. 2.7. The Laplacian matrix for a 2D image employing a 4-connected neighborhood
has a very sparse structure, resulting in only 5 diagonals; the main diagonal is the negative
row sums of the secondary diagonals. As an example of one of the sums on the main
diagonal,L0,0 = d0 = w0,1 + w0,3 = −(−w0,1 + −w0,3) = −(L0,1 + L0,3) (the negative
row sum). Note that Figure 2.7c represents the graph for a 3×3 image, with each gray box
representing an image pixel. The zeros shown in red fall within the secondary diagonals,
yet due to the structure of an image graph and its boundaries,these indicate the absence of
an edge and thus have zero edge weight.

23

nodes, andms
i for seed nodes. The random walkers algorithm as it applies toimages can

thus be summarized as follows:

1. Calculate the edge weights for adjacent pixels using Equation 2.5

2. Populate the Laplacian matrix with these edge weights, and sum the rows to the main

diagonal

3. Determine the labeled (seed) pixels set,VM , comprised ofK labels through user

specification or an automated process

4. Solve Equation 2.9 to attain the random walker probabilitiesxs for each labels

5. Determine the segmentation by labeling each unknown pixel, vi, with the label that

corresponds tomaxs(x
s
i)

Grady (2006) indicated that should interactive segmentation be desired, starting at the3rd

step above, it would be possible with changes to the seed pixel set to “use the previous

solution [xs] as the starting point for an iterative matrix solver for thenew system (Equation

2.9).” To allow interactivity, GPURW implements this approach.

2.2.2 Iterative Solvers

Solving linear systems of equations of the formAx = b, as seen in Equation 2.9, can

be accomplished directly using methods such asLU decomposition (Golub & Van Loan

1996). However, doing so comes with a significant memory requirement when working

on large systems that can quickly exceed the computational power of today’s commodity

hardware. Alternative iterative methods provide a means for solving these systems that

reduces the required memory while allowing for constrainedcomputation times (at the cost

of accuracy) (Barrettet al. 1994). As an added benefit, the operations required by the

24

iterative methods (data parallel sparse matrix-vector multiplication, and reduction for inner

products) can be readily parallelized (Bolzet al. 2003; Krüger & Westermann 2003).

The generalized form for iterative solvers requires the matrix A, a starting value vec-

tor x0, the right-hand-side vectorb, a maximum number of iterationsimax, and an error

toleranceτ < 1. Iterative solvers loop through a number of iterations, calculating a refined

result per iteration. The intent is for each iteration’s result to come closer to the actual

solution than the previous iteration, with convergence (success) being achieved when the

difference between the result of adjacent iterations is less thanτ . Iteration results may

fluctuate or diverge, depending on the system to be solved. However, the random walkers

algorithm has been proven to converge.

One of the best known iterative solvers, theJacobimethod (Jacobi 1846), determines

a result for iterationi by decomposingA into its diagonalD, its strict upper quadrantU ,

and its strict lower quadrantL:

xi = D−1(L + U)xi−1 + D−1b. (2.10)

This method provides a stationary means of solving these systems that requires few calcu-

lations per iteration. As this is a fairly simplistic method, not much information is used in

calculating each successive iteration other than the results of the previous iteration. Thus,

convergence for many classes of problems is slow. As an alternative, theCG (conjugate

gradient) method (Hestenes & Stiefel 1952) offers a non-stationary option with additional

flexibility in terms of solving different classes of problems. Non-stationary methods present

information at each iteration to be used in helping the calculations converge more quickly,

with CG allowing for the inclusion of a preconditionerP (see Listing 2.1). The simplest

such preconditioner is again attributed to Jacobi, in whichP equates to the diagonalD.

25

r0 = b − Ax0 //Initial Residual
d0 = P −1r0 //Initial Preconditioned Search Directions
δ0 = rT d0

for (i = 1 to i max) {
q = Adi−1

α = δi−1/d
T
i−1

q
xi = xi−1 + αdi−1 //Iteration i Result
r i = r i−1 − αq //Residuals
s = P −1ri //Preconditioning
δi = rT s
if (δi > τ 2δ0) {

return //Convergence
}
β = δi/δi−1

di = ri + βdi−1 //Search Directions
}

Listing 2.1. Preconditioned conjugate gradient method of Buatois et al. (to appear).

2.2.3 Soft Scissors

As the name implies,Soft Scissors(Wang, Agrawala, & Cohen 2007) inherits from the

Intelligent Scissorsalgorithm discussed in Section 2.1.2, in that it is also aboundary tracing

segmenter. Unlike theLive-Wireboundary snapping of its predecessor, which results in

binary segmentations of foreground and background, this algorithm produces high-quality

mattes for objects that could encompass fur and hair (notoriously difficult elements for

segmentation). Another unique element of Soft Scissors is that it confines computations to

very narrow update regions through what the authors call “incremental matte estimation.”

Instead of recomputing values for the entire image at each request for an update, as is the

case in graph cut-based algorithms, only the minimum set of pixels have their color and

alpha values updated. This reduces the amount of computation necessary, and allows for

an interactive system that gives near immediate feedback tothe user.

26

(a) Matte (b) Extracted Image

FIG. 2.8. An extract using Power Maskc©Digital Film Tools, which implements the Soft
Scissors algorithm. Note that gray values in the matte indicate varying percentages of alpha
transparency. The blue background in the extracted image isthere for contrast purposes.

Soft Scissors additionally employs the random walkers (Grady 2006) algorithm for

its alpha and color determinations at the matte boundaries,inheriting the benefits—such

as noise robustness and the ability to handle weak boundaries—provided by the random

walkers algorithm. When calculating color values, weighting calculations of neighborhood

size four are used with the random walkers algorithm to determine a desired color value.

However, when calculating alpha values, Wang et al. choose to use a neighborhood size of

25 (presumably a 5×5 neighborhood, with the center being the pixel itself). It would seem

that this works in favor of ensuring soft edges, as the title of the algorithm implies.

2.3 Graphics Hardware

With their work in programmable graphics architectures foruse with procedural shad-

ing, Olano and Lastra (1998) made other real-time approaches to the shading problem

possible (Peercyet al. 2000; Proudfootet al. 2001), but more notably showed what

programmability within the GPU could mean. With fixed function units being replaced

27

by a fully programmable pipeline, programmers can do more than merely create textured

polygons. Through interactions with vertex / fragment / geometry shader hardware, and

floating point support3, it is possible to achieve interactive effects with graphics hardware

that would have previously been inconceivable. Such effects include real-time lighting,

dynamic soft shadows, volumetric / layer / view distance fogging, screen space ambient

occlusion, subsurface scattering, motion blur and depth offield, all found in the PC video

gameCrysis(Crytek 2008).

Graphics is an “embarrassingly parallel” field, in that image pixel values can often be

calculated independently of each other. To handle the workload that this property presents,

today’s GPUs are highly parallel processors. With many sub-processors within the main

processor core, they provide efficient communication for the processing of geometry and

texture data on the graphics card. Though the data that resides on the GPU generally

pertains to graphical information such as vertices, color,and lighting, ultimately the GPU

uses integer or floating point data in the mathematically intensive computations that prevail

in the field of graphics.

2.3.1 GPGPU Computing

In the recent past, there has been an insurgence of the GPU being used on non-

graphics information; this phenomenon is known asGPGPU (General Purpose Graph-

ics Processing Unit) computing. Thanks to the programmablepipeline and the ability

to interact with it through standard APIs, it is now possibleto run iterative solvers and

other linear algebra operations on the GPU in parallel (Krüger & Westermann 2003;

Bolz et al. 2003). NVIDIA’s CUDA (NVIDIA 2008a), ATI’s CTM (Close to Metal)—

3Beyond single-precision, double-precision IEEE floating point support has recently become available in
NVIDIA’s newest GT200 series (NVIDIA 2008b).

28

which paved the way for AMD’sStream(AMD 2008a)4—and Apple’sOpenCL(Open

Computing Language) initiative (Munshi 2008) represent vendors’ attempts to integrate

GPGPU functionality with particular hardware. NVIDIA’s (formerly AGEIA’s) PhysX

(NVIDIA 2008c) real-time physics platform is able to interact with a number of different

graphics hardware platforms, from the XBox 360, to the Playstation 3’s Cell processors,

and now with NVIDIA’s GeForce 8 or greater lines of chips using CUDA.

In GPGPU computing, problems are decomposed into a group of operations called a

computekernel. Operations might consist of basic math, memory / texture accesses, and

function calls. The kernel and its contained operations areexecuted in parallel on a number

of threads within the GPU, with each thread being able to process different sets of data,

yet using the same operations as all other threads in the corresponding kernel. Consider

the simple problem of adding two vectors of lengthn, a andb, together and storing them

back into vectorr. A compute kernel to perform this task could spawnn threads, and use

each thread’s idi to index into the vectors:r[i] = a[i] + b[i]. Thus, threadi could calculate

the ith element of the resultant vector. Since GPUs are highly optimized for data-parallel

or SIMD (single instruction multiple data) problems such asthis one, kernels need to be

designed that allow for this distributed processing to takefull advantage of the processing

power available. Careful planning and attention are required to ensure that problems are

decomposed into kernels that best utilize the GPU’s power.

2.3.2 CUDA

NVIDIA’s CUDA is a set of APIs for the C programming language. It adds a number

of extensions to C for specifying where particular code should run, either on a CUDA-

enableddeviceor on thehostplatform (generally the CPU). Additionally, there are exten-

4Stream uses an extended version of the Brook (Bucket al. 2008) compiler.

29

sions for specifying the number of threads that should concurrently be processing a partic-

ular compute kernel. It is the responsibility of the kernel to take advantage of the available

parallelism, though doing so often only requires changing the way that a loop iterator is

defined.

CUDA abstracts away the notions of running on the GPU by dealing with threads

rather than pixels, and device / host memory rather than textures. Once information has

been transferred from the host to device memory, outputs of one device function can be

used as inputs to the next. Thus, a number of operations or kernels can be run in sequence

without transferring any data back to host memory. The arbitrary addressing of memory, or

scatter/ gatheroperations, are also permitted. This allows device memory to be accessed

just as if it were host memory, although the accessing can only be done by device kernels.

For a host function to access device memory, that memory mustfirst be copied back from

the device to the host. Once a kernel has been developed, it iscompiled into byte-code

for use by a CUDA-enabled device. The compiled device code can be linked to separately

compiled host code so that interoperability between the twocan take place.

The extensions to C provided by CUDA have enabled a vast arrayof non-graphics ap-

plications to leverage the GPU’s processing power, from financial calculations and Monte-

Carlo option pricing, to Mersenne Twister random number generators. Yet some of the

most profound contributions of CUDA come as built-in functionality from NVIDIA’s pro-

vided CUBLAS (CUDA implementation of the Basic Linear Algebra Subprograms) and

CUFFT (CUDA implementation of the Fast Fourier Transforms)libraries (NVIDIA 2007).

Both allow for applications to be developed without requiring the developer to implement

these building blocks for the GPU.

While a number of iterative solvers have been developed for the GPU (Krüger &

Westermann 2003; Bolzet al. 2003), none to date have been developed for one of the

major GPGPU frameworks such as CUDA (excepting theConcurrent Number Cruncher

30

work of Buatois et al. (to appear)). While Sengupta et al. (2007) provided sparse matrix-

vector multiplication for interoperability with CUDA, andthe CUBLAS library provided

the remaining parts needed for iterative solvers to be created, the two have not previously

been combined.

Chapter 3

APPROACH

Like most graphics applications, GPURW follows anInitialize→ Display Loop ap-

proach. TheDisplay Loop method allows for intermittentInput andUpdate calls, as can

be seen in the structural overview depicted in Figure 3.1.

The user loads an image to initialize the system. The image’swidth and height deter-

mine the allocation of host and device memory. The image’s pixel color data is transferred

to the GPU’s texture memory. Constant index, offset, and access arrays are created to define

the sparse structure of the Laplacian matrix that will laterbe used by the random walkers

algorithm. These allow for reduced calculation at run-timein the determination of weight

locations and sums in the Laplacian matrix.

Once initialized, the mainDisplay Loop’s Output section begins processing and ren-

dering an orthographic view of the loaded image overlaid by the current segmentation

mask. Input methods allow the label seeding to be manipulated: seeds canbe added, re-

moved, or modified by changing their label. Additionally, display modes can be switched

to enable the viewing of probabilities, seeds, or other pertinent information, as opposed

to the default view of the current mask. Finally,Input allows for manipulating certain

parameters of the system (such as tolerances or thresholds)and refining the current mask.

In the event that the seeds / parameters are changed, or mask refinement is requested,

31

32

Initialize

Load

Allocate
Weighting

Input

Display Loop

Seeding

Probabilities

Update
(Random Walks)

Output

Mask Screen

Location

Labeling

Mode

Generate

Image

Matte

Iterative Solver

Preconditioning

FIG. 3.1. An overview of the GPURW method.

Input signals toUpdate that the random walkers algorithm needs to re-compute the pixel

probabilities based on new information. SinceUpdate is the component of the algorithm

that requires the most computation, and is also the bottleneck of the entire process, it is

only called as necessary, to minimize latency in the user experience. Update starts by

calculating weights for the connectivity graph of the image. These weights are propagated

into the Laplacian matrix with the help of the access arrays defined during theInitialize

stage (see the bottom five rows in Figure 3.2). Additionally,these weights are used in the

summation that appears on the main diagonal of the Laplacianmatrix. Once the matrix is

filled, preconditioning for the random walker’s iterative solver occurs. The iterative solver

is executed for the Laplacian matrix, stopping once a convergence threshold reaches the

seed-determined tolerance discussed in Section 3.3.1.

Since the results of the random walkers algorithm are approximate probabilities of

a specific unmarked pixel having a particular labeling, the probabilities for each labeling

33

need to be compared to determine which labeling has the greatest probability for each pixel.

The segmentation mask is then determined based on this information.

Output updates the user’s monitor using OpenGL routines to displaythe image over-

laid by the current segmentation mask or other requested overlay. If a different display

mode was requested, the information pertaining to that modemay instead be shown. Ad-

ditionally, Output has the responsibility of returning the segmentation mask as an image

matte once a satisfactory segmentation is achieved.

3.1 Initialization

After loading an image into GPURW, the pixel information that the image contains

is transfered to device memory. OpenGL pixel and luminance buffers are allocated that

will later be used to transfer data on the device from CUDA’s memory space to OpenGL’s

memory space without leaving the GPU. Use of the pixel bufferenables the display of base

color data for the image for the computation of overlay information identifying which label

a given region of the segmentation belongs to. The luminancebuffer allows for computed

probabilities to be displayed. Since the probabilities occur in the range from0 to 1, dis-

playing them as luminance prevents the need for first converting them to RGB color values

and then displaying three color components rather than displaying the single gray-scale

luminance component. Once the buffers have been created, they are associated with cor-

responding textures. All image and probability information is drawn as a screen-aligned

rectangle. Binding the buffers to a texture allows the rectangle to simply be textured with

the calculated values and overlays in order for results to bedisplayed to the screen.

After OpenGL initialization, storage and structures necessary for the random walkers

process are initialized. The allocation oftemporary, x, b, andc vectors takes place. This

is followed by the generation of the sparse matrix representation forA that will be needed

34

for iteratively solvingAx = b on the Dirichlet problem. Since CUDA allows for 1D, 2D

and 3D device arrays, creating the vectors as 1D arrays is a direct mapping. CUDA pro-

vides a number of functions on 1D arrays, such as calculatingthe L2-norm and efficiently

calculatingαx + y for arraysx andy and the scalarα; these are all necessary for iterative

solvers. Implementing the vector-vector multiplication that is also needed for calculating

the preconditioner term,P , when preconditioning is used with CG equates to a simplistic

kernel, similar to the one described in Section 2.3.1.

For the matrix representation ofA, the translation to CUDA is much more compli-

cated. With problems that have densely packed matrices, a 2Ddevice array could have

been used as the matrix representation. However, the Laplacian matrix for a 2D image is

extremely sparse, with only a few non-zero elements per row.For a 4-connected neighbor-

hood, only a pixel’s immediate neighbor’s weights will appear in the secondary diagonals,

resulting in a maximum of five non-zero elements per row (fourneighbors and a sum).

Since a pixel may only have two or three neighbors (image corners and edges respectively),

there are entries in the secondary diagonals that will equate to zero as well (represented by

the red zeros in Figure 3.2). Excluding these from the Laplacian representation has the

potential of avoiding the computation of2w ∗ 2h floating-point zero values.

Instead of representing the matrix as a standard 2D CUDA array, theCUDPP (Sen-

guptaet al. 2007) sparse-matrix extension to CUDA is used to allow for a greatly con-

densed version of the matrixA. It uses a sparsity structure known asCRS(compressed row

storage). CRS includes a vector of column indices for all non-zero entries in the Lapla-

cian, a vector of pointers into the column indices vector that indicate where a new row

begins, and a second vector of pointers to show where each rowends. In addition to those

vectors needed by CUDPP for the CRS representation, GPURW creates convenience vec-

tors for sum pointers (where sums should be stored into the CRS Laplacian once they get

calculated), weight pointers (those weights that contribute to a particular sum), edge pixel

35

CRS

L =

 ∑A -wA,B 0 -wA,D 0 0 0 0 0

 -wB,A ∑B -wB,C 0 -wB,E 0 0 0 0

 0 -wC,B ∑C 0 0 -wC,F 0 0 0

 -wD,A 0 0 ∑D -wD,E 0 -wD,G 0 0

 0 -wE,B 0 -wE,D ∑E -wE,F 0 -wE,H 0

 0 0 -wF,C 0 -wF,E ∑F 0 0 -wF,I

 0 0 0 -wG,D 0 0 ∑G -wG,H 0

 0 0 0 0 -wH,E 0 -wH,G ∑H -wH,I

 0 0 0 0 0 -wI,F 0 -wI,H ∑I

Non-Zero Values:

Column Indices:

∑A -wA,B -wA,D -wB,A ∑B -wB,C -wB,E -wC,B ∑C -wC,F ...

0 1 3 0 1 2 4 1 2 5 ...

Row Start Pointers: 0 3 7 ...

Row End Pointers: 2 6 9 ...

Sum Pointers: 0 4 8 ...

Weight Pointers:

B D A C E B F ...Incoming Edge Indices:

 1 2 3 5 6 7 9 ...

1 2 3 10 5 6 7 14 9 19 ...

Column Weight Pointers: 3 10 1 7 14 5 19 ...

CA B

FD E

IG H
Image Size: 3x3
Pixel Count: 9

 24 Weights
 9 Sums
Lattice Size:

Weight Distr. Pointers:

FIG. 3.2. Compressed row storage for an image-based Laplacian matrix, with additional
convenience vectors for on-the-fly kernel-based calculation of the Laplacian. Note that let-
ters are used in place of zero-based indices for clarity’s sake. Since the graph is undirected,
the Laplacian is symmetric, with corresponding indices represented by like-colored boxes
in L and like-colored lines in the image graph.

36

indices (which edges are affected if a seed gets placed in this pixel), and all weight pointers

(weights are calculated from upper left to lower right in theimage, eliminating redundant

calculations of weights). These stored values can also be seen in Figure 3.2. Although

these convenience vectors entail additional storage requirements, they permit a number of

serial calculations to be saved in determining the sparsitystructure for CRS that would

otherwise bottleneck the pipeline. Initialization does not populate the non-zero entries of

the Laplacian; rather, it builds the structures for housingthem, determines how to calculate

them, and indicates where to place them once they have been calculated.

Without the work done by Sengupta et al. (2007), who provideda pre-release version

of CUDPP (the implementation of their Scan Primitives, which included sparse matrix-

vector multiplication functionality), the work presentedin this thesis would have been much

more difficult. Although other sparse matrix-vector multiplication routines existed for the

GPU (Krüger & Westermann 2003; Bolzet al. 2003), they leveraged shader code instead

of providing the interoperability with CUDA that was required for GPURW. While the

CUDPP sparse matrix-vector multiplication implementation provides the ability to change

the incoming vector, it required a fixed matrix. Once this fixed matrix had been specified,

changing the values within the matrix was not an option. For the GPURW algorithm, the

Laplacian matrix is based on the currently specified seed points and changes with every

manipulation to those seeds. Therefore, extensions to CUDPP are required to get a direct

reference to the underlying CUDA storage where the matrix values are stored. So that

the actual sparse matrix need not change and the sparsity structure does not have to be

derived at every seed change, the same structure that gets initially allocated is reused at

each iteration.

37

3.2 Input

In order to visualize the different outputs and stages, the GPURW process allows

for a number of display modes to view the image alone, labels,foreground / background

probabilities, and the current segmentation. To permit these to be seen better on a variety of

image types (gray scale, low contrast), multiple overlay modes enable the segmentation to

be viewed as different colors or as the image and its inverse.Both the display and overlay

modes are made accessible by the input stage, and can be toggled using shortcut keys.

Additionally, shortcut keys have been specified for performing user-requested refinements

to the random walkers output. A user-requested refinement modifies the iterative solver

threshold and triggers a recalculation of the probabilities, resulting in a more accurate result

at the expense of additional processing time. For comparison purposes, switching between

different iterative solvers is also an option.

The main focus of the input stage is the user interactions to specify the seeds’ labels

and locations. The system provides a seed painting brush to facilitate adding, changing and

removing seeds fromVM . This brush acts like those found in standard painting packages:

painting begins when the mouse is clicked, follows the brushas the user moves the mouse,

and ends when the user releases the mouse button. However, unlike those brushes, color

or paths based on the brush are not applied. Instead, every pixel under a painted region is

marked as a seed point with its labeling coming from keyboardmodifiers (CTRL, SHIFT)

that are pressed during the application of that brush stroke. The keyboard modifiers allow

for switching betweenforeground, backgroundandnoneso as to specify which labeling

should be applied. Seed points can thus be changed from one labeling to another by simply

switching the keyboard modifiers and repainting a desired region. Additionally, if a region

is unknown (i.e., not foreground or background), repainting it with the nonelabeling re-

moves any seed points that had previously been painted there. Since it may be desirable

38

to indicate a large number of pixels as all being seeds of the same label, the seed painting

brush’s size can be adjusted, allowing more seeds to be specified per brush stroke.

3.3 Update

When the user changes the marked seed pixels, the results must be refined towards the

user’s desired segmentation. Since a modification to the seed pixels changes the arrange-

ment of the marked and unmarked (LM andLU respectively) Laplacian entries of Equation

2.7, recalculation of the values forL each time an update occurs is necessary. Updating

translates the strokes from the seed painting brush into a seeding. It then takes the initial

image’s pixel values and by applying Equation 2.2, dictatesthe weighting and the ultimate

content ofL. Preconditioning then occurs when appropriate. This is followed by the solv-

ing of the combinatorial Dirichlet problem using an iterative solver. Finally, the probability

results from the iterative solver are translated, along with the seeding, into the final proba-

bility values. Further update passes are initialized with the prior random walker solution to

allow for faster convergence as well as better interactive response.

3.3.1 Seeding

Iterative solvers converge if and when calculations reach asteady state where changes

from one iteration to the next are below a specified toleranceτ . Additionally, iterative

solver calculations can be stopped if a maximum number of iterations have taken place.

This is useful when convergence is taking too long, and prevents cases where convergence

will not occur from continuing to iterate indefinitely. For problems that do converge (such

as the random walkers algorithm),τ acts as a flexible limiter that provides a relatively

uniform result from one invocation to the next. Thus, GPURW calculates tolerances in

39

reference to random walkers as:

τ =
|V | −

|V |
(τmax − τmin) + τmin (3.1)

where |·| indicates cardinality, andτmax and τmin are free parameters. For few seeds

(|LM | ∼= 0), τ = τmax. As the number of seeds approaches the number of pixels

(|LM | ∼= |V |), τ = τmin. For the purposes of this paper,τmax = 0.4 and τmin = 0.1

were found to allow results that were interactive and still produced high-quality segmenta-

tions as more seeds were specified.

Using this definition ofτ , the random walkers algorithm generates a smooth accu-

mulation of accuracy as seed points are added. As the number of seeds increases towards

|V |, the tolerance decreases, producing results that are closer to the optimal solution found

throughLU decomposition. While having less accurate results to beginwith is not as de-

sirable as producing the optimal solution, the trade-off inseeking greater accuracy up front

is slower convergence and, as a result, a system that is not interactive. Thus, the user must

wait to refine their results. GPURW takes the approach that asmore is known about a user’s

desired segmentation (more seed pixels equates to less unknown pixels), the more accurate

it should strive to be.

3.3.2 Weighting / Laplacian Filling

The entire weighting pipeline is implemented as a set of GPUkernels, or parallel pro-

cessing passes. Thegi values used in the calculation of weights for the Laplacian come

from a CIE L*a*b* color conversion of the image, and use aβ value of 90 for the free

parameter in calculating Equation 2.5. While RGB values could have been used directly, a

slight benefit was seen from first converting to CIE L*a*b*, since perceptual color spaces

such as CIE L*a*b* provide a more direct mapping to color distinctions that humans per-

40

ceive. The weights that are propagated into the sparse Laplacian matrix are recomputed

at each iteration through theUpdate process. This recomputation would allow future ex-

tensions to support varying weights. As weights are calculated, their negative values are

scatteredinto the Laplacian matrixL as the secondary diagonals. The color conversion,

weight calculations, and prorogation all take place in a single device kernel. Note that no

sums have been calculated at this point.

Solving the combinatorial Dirichlet problem (LUxs = −Bms) provides the means for

deriving the updated random walker probabilities for labelings. Recall that iterative solvers

are designed to solve systems of the formAx = b. Thus, to find the random walker proba-

bilities, the Laplacian and seeding information must be converted into a representation that

is comprised ofA, x andb parts. GPURW starts with the task of finding:

b = −Bms (3.2)

for the right-hand side of theAx = b equation. A second kernel derives thisb vector

based on the weights found in theB-portion ofL (see Equation 2.7) that were calculated

in the first kernel. Theb vector is initialized to zeros, with seed pointsms (represented by

the incoming edge indices vector in conjunction withVM) and the corresponding column

weight pointers vector that maps toB, being used to fill outb. Since GPURW allows

for two labellings, one for foreground and one for background, two separateb vectors are

produced based on the seeds,ms, marked as such.

A third kernel is used togather the weights in order to create the sums (using the

weight and sum pointers respectively), and to place them on the main diagonal. At the

same time, the inverse of the main diagonal is calculated as it is used by both the fixed-

point Jacobi and Jacobi preconditioned CG solvers. The fixed-point Jacobi solver requires

LU = D−1(M − D) for some matrixM , and the diagonal of that matrixD. As the

41

diagonal inverseD−1 has just been calculated, it is used to transform the Laplacian into

LU by multiplyingD−1 by the weights. Since ultimatelyLU will have zeros on the main

diagonal for the fixed-point Jacobi, this is accounted for atallocation time, with the main

diagonal being excluded from the CRS representation for this type of solver.

Since the structure of the matrix used by CUDPP for sparse matrix-vector multiplica-

tions does not change after theInitialization stage, the row and column entries that would

have been removed (where seeds exist) are instead set to zeros in the Laplacian matrix. For

the matrix operations required by CUDPP, this has the same affect as actually removing

them from the structure. Though this is not the ideal solution (calculations will still be car-

ried out on these zero values), it circumvents the need to continually reallocate the matrix.

Thus,LU is the result of zeroing the row, column, and sum values inL for rows / columns

where the sum corresponds to a seed point.

3.3.3 Preconditioning

Preconditioning utilizes the fact that iterative solvers allow for the use of prior knowl-

edge, or an initializedx0 vector. Finding the optimalx0 is difficult, yetxs from the previous

results provides an excellent source for this information.The result of oneUpdate pass,

or xs, is used asx0 in the nextUpdate pass for labels. The vectorxs represents proba-

bilities for a prior pass based on the specified seeds at that point in time. Since the seeds

that are added, removed, or changed from oneUpdate cycle to the next are generally in

a close proximity to those that existed previously, the resultant xs for subsequentUpdate

cycles are usually fairly close to those of the previous cycle. Thus, GPURW iteratively

(with each brush stroke) produces results that account for user feedback with a relatively

short computation delay between refinements.

42

3.3.4 GPU Iterative Solver

With an initializedLU matrix, b vectors from the weighting / Laplacian filling stage,

and the preconditionedx0 vector, the system must now be solved in order to determine the

random walker solution. The fixed-point Jacobi method (see Equation 2.10) is the simplest

iterative solver with storage beyond the matrix itself being limited to the inverse of the ma-

trix diagonal. Fixed-point Jacobi provides slower convergence than alternative solvers and

is rarely used in practice (Moin 2001), but in testing, it provided interactive and accurate

segmentations. Recall that for the fixed-point Jacobi implementation, when calculating

LU , the diagonal is not stored as part ofL, with this representation being multiplied by

the inverse of the diagonal. Doing this givesP , as seen in Listing 3.1. Beyond this up-

front computation of the sparse matrix, the only other calculations involved in this solver

are the vector-vector multiplication required to calculate c, and the computation-intensive

matrix-vector multiplication seen in calculatingPx. Fortunately, CUDPP provides a GPU

optimization for the non-trivial sparse matrix-vector multiplication of Px. The CUDPP

CRS matrix representation and sparse matrix-vector operations, along with the CUBLAS

GPU optimizations for determining an L2-normcublasSnrm2and for adding two vectors

togethercublasSaxpy, provide the necessary building blocks for implementing iterative

solvers on the GPU.

While pairing different preconditioners with the conjugate gradient method or choos-

ing alternative storage formats (other than CRS) might yield better results, they would come

at the cost of more storage and increased complexity in the solvers’ iteration loop (Barrett

et al. 1994). For comparison, a Jacobi preconditioned CG solver asseen in Listing 2.1 has

been implemented, whereP simply equals to the matrix diagonal. Additionally, an unpre-

conditioned CG solver has been included, which equates to setting d0 = r0 ands = ri in

that same Listing.

43

D = diagonal(A) //Sparse Diagonal Matrix
ID = inverse (D)
P = −ID ∗ (A− D)
c = ID ∗ b //Vector-Vector Multiplication
δ0 = |b| //L2-norm
for (i = 1 to i max) {

δ = δ0 / |x|
if (δ < τ) {

return
}
x = c + Px //Matrix-Vector Multiplication

}

Listing 3.1. Fixed-Point Jacobi Solver pseudo-code based on Matthews (2004).

3.3.5 Probabilities

With the standard random walkers algorithm, it is sufficientto terminate computation

onceK − 1 of thexs systems have converged (GPURW hasK = 2 different labels for

foreground and background). At that point, determining which labeling has the greatest

probability at each pixel dictates which labeling that pixel belongs to. With two labellings,

this could be simplified to computations in only a single system. If the pixel’s probability

were greater than50% for one of the two labelings, that pixel would be associated with

that higher probability labeling. However, the systems in GPURW do not generally reach

the same level of convergence that would allow for this to happen. Instead, the calcula-

tions end when the seed determined tolerance of Equation 3.1is met, so the probabilities

of the two labelings do not necessarily sum to one. Thus, it becomes necessary to run

calculations against both systems and determine, for each pixel, which system (foreground

or background) has a greater probability in that labeling’sxs vector. Since all seed pixels

equate to boundary conditions, and were thus removed from the combinatorial Dirichlet

44

(a) Unsegmented Image (b) Seed Points (c) Foreground Probabilities

(d) Background Probabilities (e) Segmentation (f) Extracted Image

FIG. 3.3. Different outputs of the Random Walkers process.

problem, the seed pixels are merged with their respective labeling’s xs vector as having

100% probability, and are merged with thexs vector of the alternative labeling as having

0% probability, based on Equation 2.8. This distinction between whether a pixel belongs to

the foreground or the background, based on the comparison ofthe probability vectors and

whether that pixels was explicitly labeled as a seed, determines the segmentation.

45

3.4 Output

As seen in Figure 3.3, GPURW offers many different possible outputs and display

modes. Using the probability outputs calculated during probability determination, a seg-

mentation mask is created. The mask is used by the OpenGL screen output functionality to

overlay the current segmentation on top of the base image. InFigure 3.3, the segmentation

is displayed using a red-blue color overlay mode. The overlays can be high-contrast, such

as viewing the background portion of the segmentation as thebase image inverse, with the

foreground shown as overly saturated. Another option is simply dulling the background

and allowing the foreground to show through normally. Beyond seeing the image overlaid

with the segmentation, a means for seeing the underlying calculated probabilities from the

random walkers process, as well as all of the seed points thathave been previously placed,

is provided. In this way, if a user is attempting to determinewhy the segmentation is not

matching their idea of what it should be, they can see where probabilities diverge from their

expectations and find places that may require additional seed points.

Since GPURW follows theDisplay Loop paradigm, user inputs such as mode

switches or seed manipulation are permitted as soon as screen output is written. These

both act as interrupts that trigger theInput stage. Given display mode switches, the cur-

rent input and calculated outputs are reused, with only a fewOpenGL parameters requiring

manipulation. This process reduces the amount of recomputation required in theUpdate

stage. TheDisplay Loop continues until the user either requests to exit the application, or

indicates that the results are satisfactory. Once a satisfactory segmentation has been found,

it is output as a grayscale alpha matte.

46

3.5 Application Interface

Following the direction of Fung & Murray (2008), the GPURW algorithm is imple-

mented as a CUDA-enabled Photoshop filter. In order to interact with Photoshop, GPURW

requires an RGB mode image (although the image data can encode grayscale values) to be

loaded into an unlocked layer. A layer mask must then be addedto the image layer. This

layer mask is where the segmentation results will be written, effectively creating a matte

segmentation. Once these two preliminary steps are performed, the GPURW filter must

be selected, and the user will be presented with the application window. The application

window is a darkened version of the image; if the mouse is within the window, a cursor

indicates the location and size of the seed-painting brush.

Chapter 4

RESULTS

4.1 Validity

To evaluate the validity of the segmentations that GPURW produces, its results are

compared to those produced by the random walkers MATLAB implementation of Grady

(2006) for numeric equivalence. Grady’s implementation produces a highly converged

probability vector,xs, for each labelings. Comparing GPURW’s probabilities to those

produced by Grady’s implementation requires that GPURW be configured to run to higher

levels of convergence than it was designed for. This dictates settingτ to a fixed toler-

ance, and increasingimax to values that no longer yield interactive results. Additionally,

programmatic seeding is required that places foreground / background seeds in identical

locations between the MATLAB implementation and the GPURW implementation.

Apart from a few aliasing artifacts, this setup produces nearly equal probability images

between the two algorithms (see Figures 4.1b & 4.1c comparedto Figures 4.1h & 4.1l,

Figures 4.2b & 4.2c compared to Figures 4.2k & 4.2l, Figures 4.3a & 4.3b compared to

Figures 4.3j & 4.3k, Figures 4.4a & 4.4b compared to Figures 4.4j & 4.4k, Figures 4.5b

& 4.5c compared to Figures 4.5l & 4.5m, and Figures 4.6b & 4.6ccompared to Figures

4.6k & 4.6l). Any variance can be attributed to the fixed toleranceτ , being either greater

or less than the tolerance that the MATLAB sparse matrix operations uses. It can be seen

47

48

(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

(e) Foreground A (f) Foreground B (g) Foreground C (h) Foreground D

(i) Background A (j) Background B (k) Background C (l) Background D

(m) Segmentation A (n) Segmentation B (o) Segmentation C (p) Segmentation D

FIG. 4.1. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code
run to convergence. The2nd & 3rd rows show GPURW foreground / background probabil-
ities for the Jacobi fixed-point solver with 800 iterations (A), the Jacobi conjugate gradient
solver with 300 total iterations at 10 iterations perUpdate pass (B), the Jacobi conjugate
gradient solver with 300 iterations from a singleUpdate pass (C), and finally the Jacobi
conjugate gradient solver with 750 iterations (D - convergence). The final row shows seg-
mentations for the corresponding test-cases.

49

from the preceding Figures that GPURW convergence, using the iterative Jacobi conjugate

gradient solver, matches that of the MATLAB random walkers implementation. The Jacobi

fixed-point solver also reaches convergence, though many more iterations are required than

for the Jacobi conjugate gradient method. GPURW’s use of iterative solvers and its overall

implementation of the random walkers algorithm are shown toproduce segmentations that

have the same validity as Grady’s implementation of the random walkers algorithm.

However, producing interactive segmentations dictates that GPURW cannot run to this

level of convergence. Instead, a relatively small value forimax and calculatingτ based on

Equation 3.1 allows for short periods of calculation to produce intermediate results. Since

GPURW does not run to full convergence, it is also necessary to show that intermediate

segmentations from higher tolerances produce equivalent segmentations to those produced

by full convergence (see Figures 4.1m, 4.1n & 4.1o compared to Figure 4.1d, Figures 4.2g

& 4.2j compared to Figure 4.2d, Figures 4.3f & 4.3i compared to Figure 4.3c, Figures

4.4f & 4.4i compared to Figure 4.4c, Figures 4.5g & 4.5j compared to Figure 4.5d, and

Figures 4.6g & 4.6j compared to Figure 4.6d). As can be seen from these Figures, GPURW

using the Jacobi fixed-point solver or the Jacobi conjugate gradient solver in a variety of

different seeding situations, produces identical segmentations to those produced by Grady’s

method run to convergence. It can also be observed that the Jacobi fixed-point solver

requires significantly more iterations than the Jacobi conjugate gradient solver to produce

comparable segmentations.

Since part of GPURW’s preconditioning is its use of the previousUpdate pass’sxs as

thex0 values to initialize the iterative solver, showing that multiple passes through the iter-

ative solver still produces the same segmentation is also required (see Figures 4.1n, 4.2m,

& 4.3l). GPURW produces the segmentation in Figure 4.1n using the Jacobi conjugate

gradient solver with 10 iterations perUpdate pass and 30 update passes for 300 total it-

erations. This is the same segmentation seen by running to convergence. While multiple

50

(a) Base Image

(b) Foreground Grady (c) Background Grady (d) Segmentation Grady

(e) Foreground A (f) Background A (g) Segmentation A

(h) Foreground B (i) Background B (j) Segmentation B

(k) Foreground C (l) Background C (m) Segmentation C

FIG. 4.2. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code run
to convergence. The center circle is50% gray. GPURW foreground / background proba-
bilities with segmentations are shown for the Jacobi fixed-point solver with 510 iterations
(A), the Jacobi conjugate gradient solver with 260 iterations (B), and finally the Jacobi con-
jugate gradient solver with 3Update passes at 850 iterations per pass (C - convergence).

51

(a) Foreground Grady (b) Background Grady (c) Segmentation Grady

(d) Foreground A (e) Background A (f) Segmentation A

(g) Foreground B (h) Background B (i) Segmentation B

(j) Foreground C (k) Background C (l) Segmentation C

FIG. 4.3. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code run
to convergence. The center circle is50% gray. GPURW foreground / background probabil-
ities with segmentations having two foreground and one background seeds are shown for
the Jacobi fixed-point solver with 4490 iterations (A), the Jacobi conjugate gradient solver
with 270 iterations (B), and finally the Jacobi conjugate gradient solver with 2Update
passes at 370 iterations per pass (C - convergence).

52

(a) Foreground Grady (b) Background Grady (c) Segmentation Grady

(d) Foreground A (e) Background A (f) Segmentation A

(g) Foreground B (h) Background B (i) Segmentation B

(j) Foreground C (k) Background C (l) Segmentation C

FIG. 4.4. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code run
to convergence. The center circle is50% gray. GPURW foreground / background probabil-
ities with segmentations having two foreground and one background seeds are shown for
the Jacobi fixed-point solver with 700 iterations (A), the Jacobi conjugate gradient solver
with 195 iterations (B), and finally the Jacobi conjugate gradient solver with 500 iterations
(C - convergence). Differently located (more closely placed) seeds allow segmentations /
convergence equal to Figure 4.3 after fewer iterations.

53

passes through the iterative solvers that use the previous result as part of preconditioning

(see Figures 4.1f & 4.1j) will yield the same segmentation asthe same number of consec-

utive iterations (see Figures 4.1g & 4.1k), the consecutive-method approaches complete

converge faster. Unfortunately, the consecutive-method approach comes at the cost of a

loss of interactivity.

4.2 Performance Considerations

Comparing Figure 4.3 to 4.4, the latter not only converges more quickly, but also

reaches the desirable segmentations more quickly. This result can be attributed to the loca-

tions of the seed points. While both Figures contain two foreground and one background

seeds, the seeds in Figure 4.4 are more closely positioned, and are centrally located (further

from the edges of the image). This means that the random walkers found at the edges of

the image to have approximately the same distance to “walk” as those found at the center

of the image. In Figure 4.3, the random walkers found at the edge of the image have to

walk a short distance to reach the edge seed pixels, but random walkers towards the center

of the image have much further to walk. With the seeds being more densely clustered in

Figure 4.4, random walkers found between the closely located seeds more quickly show

which seeds they have an affinity to. Thus, intermediate results will also reach a desirable

segmentation more quickly (Figure 4.4i reaches the desiredsegmentation 28% faster than

Figure 4.3i). Though these are properties of the random walkers algorithm that GPURW

builds upon, it is important to note that the placement of seed pixels does affect convergence

and segmentation speed.

In addition to the placement of seed pixels, the number of seed pixels also affects

convergence speed. As can be seen by comparing Figure 4.5 to 4.6, Figure 4.6 converges

significantly faster (≈ 50%). Comparing the slower-to-converge Jacobi fixed-pointsolvers

54

for these two examples, Figure 4.6g takes≈ 24% as long as Figure 4.5g to reach the same

segmentation. This difference can once again be attributedto the distance that random

walkers have to “walk” to reach the seeds. With the composition of these Figures, the spiral

dictates that random walkers have to walk through the spiralas if walking through a maze.

The walkers at the edges of Figure 4.5 have a significant distance to travel before they reach

the seeds. In contrast, the walkers with the greatest distance to travel in Figure 4.6 are those

found halfway through the spiral; it takes these walkers approximately the same amount of

time (number of iterations) to walk to the seeds in the centerof the image as it it takes to

walk to the seeds at the edges of the image. Hence there is a≈ 50% speedup from Figure

4.5 to 4.6. This once again shows how seed placement and further the number of seeds can

drastically affect the speed of reaching a desired segmentation. GPURW acknowledges and

addresses this effect through its ability to quickly show how newly placed seeds affect the

current segmentation, and its allowance for the addition ofnew seeds to areas that would

benefit from them (areas that are not yet part of the segmentation).

Since GPURW builds upon the random walkers algorithm, it gains properties of the

underlying algorithm as well. Gap-spanning (see Figure 4.1) and indeterminate-region-

spanning (see Figure 4.2) are both present. These properties make the random walkers

algorithm work well, yet relying solely on them and just a fewseed points can result in un-

desirable results. As can be seen by comparing the segmentations of Figure 4.2 to Figures

4.3 & 4.4, the segmentation that is produced from just a few seeds often requires additional

seeding to encompass all desired regions (in this case adding the inner circle as part of the

foreground segmentation). GPURW’s approach to quickly adding seeds, and for interme-

diate results (not full convergence) to dictate the segmentation, makes it easy to see regions

that do not match the desired segmentation and to add new seedpoints in those regions.

Since the number of seeds and their proximity to one another affects how quickly con-

vergence / segmentations are reached, GPURW can be tasked with segmenting the Lena

55

(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

(e) Foreground A (f) Background A (g) Segmentation A

(h) Foreground B (i) Background B (j) Segmentation B

(k) Foreground C (l) Background C (m) Segmentation C

FIG. 4.5. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code
run to convergence. GPURW foreground / background probabilities with segmentations
are shown for the Jacobi fixed-point solver with 75000 iterations (A), the Jacobi conjugate
gradient solver with 1530 iterations (B), and finally the Jacobi conjugate gradient solver
with 2920 iterations (C - convergence).

56

(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

(e) Foreground A (f) Background A (g) Segmentation A

(h) Foreground B (i) Background B (j) Segmentation B

(k) Foreground C (l) Background C (m) Segmentation C

FIG. 4.6. Comparison of GPURW outputs to outputs of Grady’s (2006) MATLAB code run
to convergence. GPURW foreground / background probabilities with segmentations having
four foreground and five background seeds are shown for the Jacobi fixed-point solver with
17650 iterations (A), the Jacobi conjugate gradient solverwith 700 iterations (B), and the
Jacobi conjugate gradient solver with 1510 iterations (C - convergence). More seeds allow
segmentations / convergence equal to Figure 4.5 after feweriterations.

57

(a) Trimap (b) Trimap Overlayed (c) Difference Scale (d) Foreground 1

(e) Difference 1-2 (f) Foreground 2 (g) Difference 2-3 (h) Foreground 3

(i) Difference 3-4 (j) Foreground 4 (k) Difference 4-5 (l) Foreground 5

(m) Difference 5-6 (n) Foreground 6 (o) Difference 6-7 (p) Foreground 7

FIG. 4.7. Probability images (Foreground 1 - 7) and the amount ofdifference between one
probability image and the successive probability image. All images were generated using
the GPURW algorithm with a Jacobi conjugate gradient solver. The solver went through the
image number (Foreground 1 = 1 ... Foreground 7 = 7)Update passes at 100 iterations per
pass. The trimap equates to white being labeled as foreground seeds, black as background
seeds, and gray being left as unknown to be solved for.

58

female image based on a trimap approach (see Figure 4.7). Recall that in a trimap, there

are known areas of foreground and background, as well as regions of unknown pixels to

be solved for. This directly equates to the random walkers algorithm with two possible

labellings (foreground / background) and thus to the GPURW algorithm. The unknown

regions equate to pixels that have not been given a seed and need to be solved for. Pro-

grammatically seeding GPURW with the trimap shown in Figure4.7a, where everything

in black is labeled as background seeds, everything in whiteas foreground, and the gray

regions being left as unknown, produces a segmentation after a small number of iterations

that is close to that seen in a converged result. In looking atthe successive images in Figure

4.7, the greatest amount of change fromUpdate pass toUpdate pass can be seen in the

earliest passes. As additional passes occur, the amount of new probability information that

is calculated can be seen to significantly decrease from red sections of nearly 100% change

in Figure 4.7e, to the greatest change being less than 5% in Figure 4.7o.

Observing this property lends merit to GPURW’s implementation of the seed-painting

brush, which enables a user to paint varying-sized regions of seeds at one time based on the

size of the current brush. Adding new seeds to regions of little change (regions that would

otherwise take a large number of iterations to be added to thesegmentation) results in the

greatest amount of change in those region for the immediately proceedingUpdate passes.

Additionally, the change in the effect of those new seeds is seen to level out as seeds are

added elsewhere. Should new seeds be added in close proximity to preexisting seeds, there

will once again be the largest amount of change surrounding these new seeds, with that

changing being driven by both the new and the old seeds.

The GPURW method provides interactive image segmentationsthat permit continual

specification of additional user intentions. Since it presents a new way of interacting with

the segmentation problem, there are still a number of challenges. Through continued use

of the interface, good and bad usage patterns have been identified that dictate to what

59

extent the application remains interactive. Specifying a large number of seeds initially

(i.e., starting with a large seed painting brush) results ina very low initial toleranceτ .

When the algorithm begins, no or limited preconditioning information exists from prior

iterations. Thus, with a low initialτ , the algorithm must run through more iterations in

order to converge upon the low tolerance. The adverse affectof a lower tolerance for

τ is a greater number of iterations to reach that tolerance. Thus, the system becomes

less interactive. One solution to this is to reduceimax to a value that permits interactivity

regardless ofτ .

By starting with the specification of just a few seeds, and a correspondingly higher

τ , convergence is reached much more quickly then is the case with a lowerτ . As more

seeds are added, the application utilizes the results from each prior pass to accommodate

the tolerance being gradually restricted. Though this usage pattern proves to be optimal for

this application, it is not imposed as a restriction. It is upto the user to decide how they

want to interact with the application. The performance statistics outlined in the following

sections reflect this preferred usage pattern.

4.3 Base Performance

The testing platform used was a Windows VistaTM system comprised of an IntelR©

CoreTM 2 Duo 6400 running at 2.13 GHz, 2 - 1GB dims of DDR2 RAM, and an NVIDIA R©

GeForceR© 8800 GTS 640MB GPU all running at factory speeds. As can be seen in Table

4.1, the number of rows and non-zero entries in the CUDPP CRS (compressed row stor-

age) sparse matrix structure, scale logarithmically with image size. The device and system

memory also follow a logarithmic trend beyond constant memory requirements (see Figure

4.8).

Table 4.1 shows favorable results in terms of the amount of time necessary for produc-

60

ing a “satisfactory segmentation.” Since satisfactory segmentation is a subjective measure,

producing results that approach an unrefined (without largeamounts of time spent highly

refining edges) result of similar quality as other segmentation algorithms is used as the

success criterion. Due to the edge limitation that will be discussed in Section 5.1.1, expect-

ing other algorithms to produce perfect results would give GPURW an unfair advantage in

comparison to those other algorithms.

The test system has noticeable difficulty maintaining real-time performance with

larger images, although interacting with the algorithm on images up to 10242 is feasible (in-

teractivity here is defined as the system functioning at an average of two or more frames per

second). As image size increases, the amount of informationto be processed far exceeds the

concurrent processing capabilities of the available hardware. For the NVIDIAR© GeForceR©

8800 GTS 640MB GPU used, there is the possibility of 9,216 concurrent threads1 when the

GPU is fully utilized. It can be seen from Table 4.1, that in the simple case of calculating all

of the non-zero values for the sparse matrix even for a small 128×128 image, the number of

non-zero values is much greater than the number of concurrent threads that this GPU is ca-

pable of handling. This lack of balance between threads and information to process results

in all of the information not being processed at once, but instead being processed in thread

blocks. Each block must wait until previous blocks have completed processing to gain ac-

cess to the GPU’s processors. Yet the performance of the random walkers algorithm—and

therefore GPURW—scales depending upon the hardware on which it is run. Fortunately,

incorporating additional parallel computing power (i.e.,making more threads available for

concurrent processing) into systems using CUDA is feasible. NVIDIA offers the ability to

link multiple GPUs together, providing more computing power as needed. Handling larger

images at more interactive rates could therefore be enabledby incorporating additional

1According to NVIDIA (2008a), this GPU has 12 multiprocessors with a maximum of 768 threads per
multiprocessor.

61

Image Size (pixels) 1282 2562 5122 10242

CRS Row Count (pixel count) 16,384 65,536 262,144 1,048,576
CRS Non-Zero Values 65,024 261,120 1,046,528 4,190,208
Device Memory Used (MB) 59.72 69.88 110.5 273.3
System Memory Used (MB) 50.54 56.484 88.588 223.564
Satisfactory Segmentation (sec.)14.9 19.1 34.3 93.1

Table 4.1. Statistics pertaining to GPURW for the Lena female image at different resolu-
tions. Note that the device memory consumption indicates total memory being used by the
GPU. Thus, there is constant memory in use due to the GPU additionally functioning as
the primary display adapter (the operating system accountsfor this constant allotment of≈
57.2 MB for general display purposes).

0

50

100

150

200

250

300

128 × 128 256 × 256 512 × 512 1024 × 1024

Image Size

Device Memory Used (MB)

System Memory Used (MB)

Satisfactory Segmentation (Seconds)

FIG. 4.8. Plotted statistics from Table 4.1, showing the correlation between the logarithmic
scaling of memory use and time-to-segment with the logarithmic changes in image size.

62

compatible GPUs and programming CUDA to take advantage of them.

4.4 Performance Comparison

Since Photoshop is a professional digital image editing suite, some of the algorithms

outlined in this paper have been implemented as Photoshop filters or selection tools, and

are thus available for comparison purposes. Figure 4.9 compares the segmentation results

and user interaction required by the GPURW framework to these other Photoshop plug-ins.

Each is tasked with segmenting Lena (the woman in the image) from her background. The

plug-ins in the comparison are:

• Adobe’sMagnetic Lasso

• GrabCut(implementation does not include edge-matting)

• GPURW (binary masking)

• Digital Film Toolsc© Snapv2.5.3 (graph cutting implementation)

• Digital Film Toolsc© Power Maskv1.0 (Soft Scissorsimplementation)

• GPURW Probability (probability-based masking)

The findings indicate that in all of the algorithms, edge handling poses the greatest chal-

lenge. While many algorithms offer advanced features to refine the edges, the time required

for edge refinement significantly adds to the initial segmentation time.

Of these segmentation algorithms, the majority provide binary (strictly foreground or

background) results, except forPower Maskand the probability-based masking version of

GPURW. Observing the binary results, all have difficulty with the purple feather and the

hair on the right side of Lena’s head, thoughGrabCut and GPURW retain some of the

edge detail (see Figures 4.10b & 4.10c respectively).Snaploses parts of the edge contour

63

due to its simplifying the graph-cutting results to producea spline. While this results in

a smooth edge, fine detail along the edge gets lost (see Figure4.10d). Magnetic Lasso

also suffers from a similar issue, in that the segmentation boundary “snaps” to features that

sometimes encompass edge detail, and other times, to features that lie within the object or

background. This “snapping” causes the boundary to over-simplify segmentation details

(see Figure 4.10a). All of the binary methods handle distinct edges, like the one defined by

the edge of Lena’s hat, fairly uniformly.

Since there was no direct comparison forPower Mask, GPURW was modified to use

the foreground probabilities as the matte directly (ratherthan determining the maximum

probability between the foreground and background). By doing so, the resultant matte’s

values are able to indicate strictly foreground, strictly background, or some combination of

foreground / background for each pixel. A comparison of the probability-based masking

version of GPURW to the standard GPURW algorithm can be seen in Figure 4.11. Note that

in order to achieve foreground probabilities that are able to produce a viable matte, either

the probabilities need to be normalized, or GPURW needs to berun until it approaches

convergence. This probability-based masking version of GPURW andPower Maskboth

handle the hair and feather more thoroughly than the binary segmentation methods.Power

Maskdoes a better job than GPURW with the feather in ensuring thatdetails remain intact

(see in Figure 4.9e and more visibly in Figure 4.10e how the tendrils of the feather extend

beyond the main edge). However, both of these methods have errors along the top edge of

the hat, either adding to or taking away from what should be included in the segmentation

(see the left side of Figures 4.10e & 4.10f).

With the Magnetic Lasso, GrabCut refinements (beyond the initial rough bounding

box specification) andPower Mask, careful input is required. For theMagnetic Lassoand

Power Mask, the main interaction with the algorithms is in explicitly tracing the edge of

a desired object. ForGrabCut refinements, specifying either additional sections of fore-

64

(a) Magnetic Lasso - 43s (b) GrabCut - 71s (c) GPURW - 48s

(d) DFT Snap - 40s (e) DFT Power Mask - 78s (f) GPURW Probability - 71s

Strokes (a) Strokes (b) Strokes (c) Strokes (d) Strokes (e) Strokes (f)

FIG. 4.9. Comparisons of different segmentation methods. Segmentations can be seen in
the top two rows (the amount of time required for the segmentation in seconds is shown
next to the name of the algorithm), while the inputs requiredto create the segmentations in
their respective interface can be seen in the bottom row. Redstrokes equate to foreground
markings, blue to background, and yellow represent explicit-boundary indications. The
boxes with dashed lines in the segmentation image are enlarged in Figure 4.10, with the
blue seen on the left, and the red on the right.

65

(a) Zoom of Figure 4.9a (b) Zoom of Figure 4.9b (c) Zoom of Figure 4.9c

(d) Zoom of Figure 4.9d (e) Zoom of Figure 4.9e (f) Zoom of Figure 4.9f

FIG. 4.10. Comparisons of specific regions of different segmentation methods. The left
side of each image is an enlarged version of the blue dashed box seen in Figure 4.9, while
the right is for the red dashed box in the same Figure. The leftside shows a region of
the segmentation that perceptually should be a distinct hard edge running along the top of
Lena’s hat. The right side shows a region comprised of the feather from Lena’s hat, which
presents the challenge of semi-transparency.

66

ground or background must occur very close to the actual boundary for the new specifi-

cations to have any effect on the segmentation. All three require patience and a steady

hand, since accurate input equates to accurate resultant segmentations. In contrast,Snap,

both versions of GPURW, and the initial bounding box specification of GrabCutpermit

rough indications of the user’s desired segmentation. The benefit of handling these rough

indications is seen in the reduced amount of time that it takes for them to be specified by a

user.

Figure 4.12 shows a closely textured CT scan, in which the edges of the objects for

segmentation (the three white regions) blend into their surroundings. There are no dis-

tinct edges for the three regions, but rather a tapering fromwhite to the gray texture that

surrounds them. As can be seen from Figure 4.12d, due to the lack of distinct edges, the

Magnetic Lassotool requires a large amount of input. This results in its taking nearly

double the amount of time thatSnap& Power Masktake, and more than twice the time

that GPURW requires. It once again suffers from a lack of edgedetail due to its over-

simplification between input points. Unlike the rest of the algorithms,Snapis unable to

handle multiple distinct objects, which results in three invocations of the plug-in to pro-

duce the three distinct objects of Figure 4.12g. Like theMagnetic Lasso, it suffers from

over-simplification, which results in a smooth line betweencontrol points, but hard corners

at the control points.

GrabCut & GPURW both handle the lack of defined edges more thoroughly than

the Magnetic Lasso, and are able to capture pixel-level edge detail (see Figures 4.12b &

4.12c). GPURW does so in about two-thirds the time thatGrabCut takes to attain its

segmentation, and performs faster than any of the other algorithms for this image. Once

again, both methods benefit from the ease of specifying roughindications of the user’s

desired segmentation. Both algorithms require only a few explicit strokes (in foreground

regions of fine detail) beyond the rough indications to attain the segmentations seen.

67

(a) CT Scan

(b) Foreground Probabilities (c) Probability-Based Segmentation

(d) Hard Mask (e) Hard Mask-Based Segmentation

FIG. 4.11. Comparison of returning a matte based solely on the foreground probabilities,
versus returning the hard segmentation matte that GPURW returns. The results have been
cropped to allow for greater visible distinction. The base-image comes from Grady (2006).

68

ForPower Mask, no additional refining strokes are required beyond the explicit bound-

ary indications (see Figure 4.12h for the segmentation, andFigure 4.12k for the boundary

indications). BothPower Maskand the probability-based masking version of GPURW cap-

ture edge variability that may be preferable for this type ofimage. Doing so might enable a

doctor to see how confident they should be when operating on the edges of a segmentation

region seen for the image. In the event that the distinction between the three white segments

and their surroundings equated to healthy versus diseased tissue, much more care would be

needed on the doctor’s part when removing regions where the tissue was not solely diseased

(those regions seen in Figures 4.12h & more distinctly in 4.12i, where the blue background

shows through the segmentation).

Based on the results seen in both Figures 4.9 and 4.12, the GPURW algorithm is able to

perform segmentations that are comparable to or better thanthe other image segmentation

algorithms. Not only does GPURW produce high-quality segmentations, but it does so

with real-time interactive feedback, showing the user whatthe current segmentation looks

like at all stages of the segmentation process. This enablesGPURW to produce quality

segmentations more quickly than competitive algorithms.

69

(a) Magnetic Lasso - 152s (b) GrabCut - 91s (c) GPURW - 67s

(d) Magnetic Lasso Strokes (e) GrabCut Strokes (f) GPURW Strokes

(g) DFT Snap - 83s (h) DFT Power Mask - 81s (i) GPURW Probability - 113s

(j) DFT Snap Strokes (k) DFT Power Mask Strokes (l) GPURW Probability Strokes

FIG. 4.12. Comparisons of different segmentation methods on a cropped region of a closely
textured CT Scan (the amount of time required for the segmentation in seconds is shown
next to the name of the algorithm). The inputs required to create the segmentations in their
respective interface are shown immediately below the segmentation results. Red strokes
equate to foreground markings, blue to background, and yellow represent explicit-boundary
indications.

Chapter 5

CONCLUSIONS

5.1 Limitations And Future Work

Although the results presented in this thesis are promising, there are several limitations

in the current system. Continued work in these areas could yield significant benefit for the

GPURW algorithm. These are detailed as possibilities for future research.

5.1.1 Edge Handling

One of the primary shortcomings of the GPURW algorithm is itslack of specialized

handling for transparency along segmentation edges. Sincesegmentation is based on ap-

proximate convergences, with the result being determined by those pixels that have greater

random walkers probabilities for the foreground than for the background, GPURW pro-

duces binary segmentations (see Figure 4.11e). Figure 4.11c shows that merely using the

probabilities to determine the final matte is not sufficient,since not all transparency of

objects is desirable. Algorithms such asSoft Scissors(Wang, Agrawala, & Cohen 2007)

could provide additional insight into how to extend GPURW toincorporate the necessary

segmentation edge handling.

70

71

5.1.2 Flood Filling

While testing input images such as Figures 4.2 - 4.6 and Figure 4.11, in which large

areas of the image have the same pixel information (all black/ white / gray), it seemed that

it might be possible to apply a tolerance-based flood-fillingto regions of similar color in a

fashion similar to the seed-filling of Heckbert (1990). One possibility is to flood-fill seed

points in the region, since all pixels within the given similarity region presumably would

receive the same labeling. This approach presents challenges for the calculation ofτ and

the preconditioning of thex0 vector, and renders the gap-spanning ability of the random

walkers algorithm useless (as can be seen in Figure 4.1).

An alternative approach would be to use flood-filling for preconditioning thex0 vector.

Doing so would also need to affect the calculation ofτ in some way. Otherwise, the addition

of new refinement seeds might produce no actual changes to thesegmentation, sinceτ could

result in immediate convergence with the better preconditionedx0 vector. In either case,

additional research is necessary as to whether GPURW could benefit from the flood-filling

algorithm, and what changes to the calculation ofτ would be needed to make this a viable

option.

5.1.3 CUDPP Sparse Matrix Vector Multiplication

Although CUDPP provides a general solution to sparse matrix-vector multiplication

on the GPU using CUDA, it is not necessarily the optimal solution for the class of problems

including GPURW. Zeroing the row, column, and sum values inL for rows / columns where

the sum corresponds to a seed point to produceLU results in unnecessary calculations,

which would not be incurred by an ideal sparse matrix structure and sparse matrix-vector

multiplication algorithm.

Since certain properties are known about the sparse matrices for the random walker

72

algorithm (one primary diagonal, four secondary diagonals, symmetric), a specialized algo-

rithm such as the one presented by Grady et al. (2005) might befaster. Since the matrix is

symmetric, storing all four secondary diagonals is not necessary. Depending on the relative

cost of accessing memory and addition operations, calculating the diagonal at runtime from

gathered secondary diagonals might also speed up performance while saving storage. Ulti-

mately, further refinements could be made to matrix-vector multiplication handling and the

structure used to store the sparse matrix. Since this is the most computationally intensive

part of the GPURW algorithm, any improvements would offer significant benefits.

5.1.4 Different Iterative Solvers

In order to determine if the random walker problem could benefit from different it-

erative methods, the fixed-point Jacobi, unpreconditionedCG (conjugate gradient), and

Jacobi preconditioned CG solvers were all implemented. Since the fixed-point Jacobi is

the simplest form of solver, it was the first to be implemented, and produced the best re-

sults, enabling iterative interaction with the system, andthe fewest “stutters” (caused by

computational delays). The Jacobi preconditioned CG solver was also fairly interactive.

As can be seen in Figures 4.1 - 4.6, this solver outperforms the fixed-point Jacobi solver in

terms of number of iterations required for reaching a desired segmentation. With additional

changes to the computation and use ofτ , this solver may be the most promising.

Unlike the Jacobi fixed-point and Jacobi preconditioned CG solvers, the unprecondi-

tioned CG solver presented unexpected results. The expectation was that regardless of the

solver being used, the same results would be produced with varying computation times.

However, it was surprising to find that this solver produced completely different results

than the other two. As seen in Figures 5.1a and 5.1b, the calculated random walker proba-

bilities did not match those produced by the other solvers. Instead, the probabilities had a

noticeable rippling pattern, reminiscent of those seen when a pebble is dropped into a body

73

(a) CG Foreground (b) CG Background (c) CG Segmentation

(d) CG Checkerboard Foreground(e) CG Checkerboard Background(f) CG Checkerboard Segmentation

FIG. 5.1. Use of an unpreconditioned CG solver yielding ripple effects. Due to convergence
never being reached, an iteration threshold (imax) of 20 iterations perUpdate was imposed.
Modifying the seed painting brush to paint seeds on a checkerboard pattern (i.e., no adjacent
seeds), the unpreconditioned CG solver was rendered usable. Due to the reduced number
of seeds caused by preventing seed adjacency, the calculation of τ was affected and user-
initiated refinements were necessary.

74

of water, with the seed points being the centers of the ripples. While the reason for these

results remains unclear, disallowing adjacent seeds solved the problem. By modifying the

seed-painting brush to only place seeds on a checkerboard patterned grid, the rippling ef-

fect went away. Since this constraint also cut the number of possible seeds for the image

in half, modifying the calculation ofτ by replacing|V | with |V |
2

might yield similar re-

sults to the other solvers, though it was found that merely invoking additional user-initiated

refinements produced satisfactory results.

5.2 Conclusion

This thesis has presented GPURW, a fast and accurate single-image segmentation al-

gorithm that allows for binary (object / not object) interactive segmentations through an

iterative process. By painting seeds on an underlying image, the user refines the cur-

rent segmentation by adding, removing, or changing seeds, which moves them towards

their desired segmentation. Through this gradual indication of which sections of the image

should be included in the foreground / background segmentations, accuracy is accumulated

towards the desired result.

Since the random walkers algorithm that GPURW builds upon requires solving large

sparse systems of equations, GPURW employs NVIDIA’s CUDA-accelerated iterative

solvers to aid in the calculation of the random walker probabilities. It produces real-time

visual feedback for the current segmentation by utilizing this parallel acceleration, by in-

troducing a novel tolerance calculation, and through the use of prior results to precondition

the iterative solvers. Learning to use the GPURW application is simple and straightfor-

ward, and it produces segmentations that are as good as or better than those produced by

other binary segmentation methods.

Ultimately, segmentation presents the challenge of findingthe solution to an under-

75

constrained problem. Through GPURW’s iterative process, and with the user’s aid in

indicating what they expect from the segmentation, GPURW provides the ability to add

constraints that yield results representative of a particular user’s desired segmentation.

REFERENCES

[2004] Acosta, B. D. 2004. Experiments in Image Segmentation for Automatic US License

Plate Recognition. Master’s thesis, Virginia PolytechnicInstitute and State University.

[1998] Adobe. 1998. Adobe Photoshop 5.0 New Feature Highlights. http://ftp.build.bg/

Books andHelp/Prepress/photoshop5.pdf.

[2008] Adobe. 2008. Photoshop CS3. http://livedocs.adobe.com/enUS/Photoshop/10.0.

[2004] Agarwala, A.; Dontcheva, M.; Agrawala, M.; Drucker,S.; Colburn, A.; Curless,

B.; Salesin, D.; and Cohen, M. 2004. Interactive Digital Photomontage. InSIGGRAPH

’04, 294–302. New York, NY, USA: ACM.

[2008a] AMD. 2008a. AMD Stream Computing - Technical Overview. http://ati.amd.

com/technology/streamcomputing/AMDStreamComputingOverview.pdf.

[2008b] AMD. 2008b. AMD Stream Processor First to Break 1 Teraflop Barrier. http:

//www.amd.com/us-en/Corporate/VirtualPressRoom/0,,51 104 543∼126593,00.html.

[1994] Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout,

V.; Pozo, R.; Romine, C.; and der Vorst, H. V. 1994.Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods. Philadelphia, PA: SIAM.

[2003] Bolz, J.; Farmer, I.; Grinspun, E.; and Schröoder, P. 2003. Sparse Matrix Solvers

on the GPU: Conjugate Gradients and Multigrid. InSIGGRAPH ’03, 917–924. New

York, NY, USA: ACM.

[2001] Boykov, Y. Y., and Jolly, M. P. 2001. Interactive Graph Cuts for Optimal Boundary

76

77

& Region Segmentation of Objects in N-D Images. InPrococeedings of the Eighth IEEE

International Conference on Computer Vision ICCV 2001, volume 1, 105–112.

[2002] Boykov, Y., and Kolmogorov, V. 2002. An ExperimentalComparison of Min-

Cut/Max-Flow Algorithms for Energy Minimization in Vision. In IEEE Transactions

on PAMI. IEEE Computer Society.

[2003] Boykov, Y., and Kolmogorov, V. 2003. Computing Geodesics and Minimal Sur-

faces via Graph Cuts. InICCV ’03: Proceedings of the Ninth IEEE International Con-

ference on Computer Vision. Washington, DC, USA: IEEE Computer Society.

[to appear] Buatois, L.; Caumon, G.; and Lévy, B. to appear.Concurrent Number

Cruncher - A GPU Implementation of a General Sparse Linear Solver. International

Journal of Parallel, Emergent and Distributed Systems.

[2008] Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Hanrahan, P.; Houston, M.; and Fata-

halian, K. 2008. BrookGPU. http://graphics.stanford.edu/projects/brookgpu/. Stanford

University Graphics Lab.

[2007] Charpentier, F. 2007. Specifications - Tom’s Hardware - Nvidia’s GeForce 8800

GTS 512 MB. http://www.tomshardware.com/reviews/geforce-8800-gts-512-mb,1743-

2.html.

[2001] Chuang, Y.-Y.; Curless, B.; Salesin, D. H.; and Szeliski, R. 2001. A Bayesian

Approach to Digital Matting. InProceedings of IEEE CVPR 2001, volume 2, 264–271.

IEEE Computer Society.

[2008] Crytek. 2008. CryENGINE2. http://www.cryengine2.com/index.php?pnr=

1&conid=2.

78

[1984] Dodziuk, J. 1984. Difference Equations, Isoperimetric Inequality and the Tran-

sience of Certain Random Walks. InTransactions of the American Mathematical Soci-

ety, volume 284, 787–794.

[1999] Efros, A. A., and Leung, T. K. 1999. Texture Synthesisby Non-parametric Sam-

pling. In IEEE International Conference on Computer Vision, 1033–1038.

[1998] Falcão, A. X.; Udupa, J. K.; Samarasekera, S.; Sharma, S.; Hirsch, B. E.; and

de A. Lotufo, R. 1998. User-Steered Image Segmentation Paradigms: Live Wire and

Live Lane.Graphical Models and Image Processing60(4):233–260.

[1956] Ford, L. R., and Fulkerson, D. R. 1956. Maximal Flow Through a Network.

Canadian Journal of Mathematics8:399–404.

[2008] Fung, J., and Murray, T. 2008. Building CUDA Photoshop Filters for the GPU.

Technical report, NVIDIA.

[2008] GIMP. 2008. GNU Image Manipulation Program. http://docs.gimp.org/en.

[1988] Goldberg, A. V., and Tarjan, R. E. 1988. A New Approachto the Maximum-Flow

Problem.JACM: Journal of the ACM35(4):921–940.

[1996] Golub, G. H., and Van Loan, C. F. 1996.Matrix Computations (Johns Hopkins

Studies in Mathematical Sciences). The Johns Hopkins University Press.

[2004] Grady, L., and Funka-Lea, G. 2004. Multi-Label ImageSegmentation for Medical

Applications Based on Graph-Theoretic Electrical Potentials. In Šonka, M.; Kakadi-

aris, I. A.; and Kybic, J., eds.,Computer Vision and Mathematical Methods in Medical

and Biomedical Image Analysis, ECCV 2004 Workshops CVAMIA and MMBIA, number

LNCS3117 in Lecture Notes in Computer Science, 230–245.

79

[2005] Grady, L.; Schiwietz, T.; Aharon, S.; and Westermann, R. 2005. Random Walks

for Interactive Alpha-Matting. In Villanueva, J. J., ed.,Proceedings of the Fifth IASTED

International Conference on Visualization, Imaging and Image Processing, 423–429.

Benidorm, Spain: ACTA Press.

[2006] Grady, L. 2006. Random Walks for Image Segmentation.IEEE Transactions on

Pattern Analysis and Machine Intelligence28(11):1768–1783.

[1985] Haralick, R., and Shapiro, L. 1985. Survey- Image Segmentation Techniques.

Computer Vision Graphics and Image Processing29:100–132.

[1990] Heckbert, P. S. 1990.A Seed Fill Algorithm. San Diego, CA, USA: Academic

Press Professional, Inc. 275–277.

[2001] Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.; and Salesin, D. H. 2001.

Image Analogies. InSIGGRAPH ’01: Proceedings of the 28th Annual Conference on

Computer Graphics and Interactive Techniques, 327–340. New York, NY, USA: ACM.

[1952] Hestenes, M. R., and Stiefel, E. 1952. Methods of Conjugate Gradients for Solving

Linear Systems.Journal of Research of the National Bureau of Standards49(6):409–

436.

[2005] Intel. 2005. Discovering Multi-Core: Extending theBenefits of Moore’s Law.

http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf.

[2008] Intel. 2008. Processors - IntelR© microprocessor export compliance metrics. http:

//www.intel.com/support/processors/sb/ca-023143.htm.

[1846] Jacobi, C. G. J. 1846.Über ein leichtes Verfahren die in der Theorie der

Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen.Crelle’s Journal

30:51–94.

80

[2003] Krüger, J., and Westermann, R. 2003. Linear AlgebraOperators for GPU Imple-

mentation of Numerical Algorithms.SIGGRAPH ’03: ACM Transactions on Graphics

(TOG)22(3):908–916.

[2003] Kwatra, V.; Schdl, A.; Essa, I.; Turk, G.; and Bobick,A. 2003. Graphcut Textures:

Image and Video Synthesis Using Graph Cuts.SIGGRAPH ’03: ACM Transactions on

Graphics (TOG)22(3):277–286.

[2000] Lee, K.-M., and Street, W. N. 2000. Automatic Image Segmentation and Classifi-

cation Using On-line Shape Learning.WACV ’00: Fifth IEEE Workshop on Applications

of Computer Vision, 20000:64–70.

[2005] Lombaert, H.; Sun, Y.; Grady, L.; and Xu, C. 2005. A Multilevel Banded Graph

Cuts Method for Fast Image Segmentation. InICCV ’05: Proceedings of the Tenth

IEEE International Conference on Computer Vision (ICCV’05), volume 1, 259–265.

Washington, DC, USA: IEEE.

[2004] Mathews, J. H. 2004. Jacobi and Gauss-Seidel Iteration. http://math.fullerton.edu/

mathews/n2003/GaussSeidelMod.html.

[2001] Moin, P. 2001. Fundamentals of Engineering Numerical Analysis. Cambridge

University Press.

[1965] Moore, G. E. 1965. Cramming More Components onto Integrated Circuits.Elec-

tronics38(8):114–117.

[1975] Moore, G. 1975. Progress in Digital Integrated Electronics. IEEE International

Electron Devices Meeting Tech Digest11–13.

81

[1995] Mortensen, E. N., and Barrett, W. A. 1995. Intelligent Scissors for Image Compo-

sition. In SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer

Graphics and Interactive Techniques, 191–198. New York, NY, USA: ACM.

[2008] Munshi, A. 2008. OpenCL. http://s08.idav.ucdavis.edu/munshi-opencl.pdf.

[2007] NVIDIA. 2007. CUDA CUBLAS Library. http://developer.download.nvidia.com/

compute/cuda/11/CUBLAS Library 1.1.pdf.

[2008a] NVIDIA. 2008a. NVIDIA CUDA Compute Unified Device Architecture - Pro-

gramming Guide. http://developer.download.nvidia.com/compute/cuda/20/NVIDIA

CUDA ProgrammingGuide2.0.pdf. Version 2.0.

[2008b] NVIDIA. 2008b. NVIDIA GeForce GTX 200 GPU Datasheet. http://www.nvidia.

com/docs/IO/55506/GeForceGTX GPU Datasheet.pdf.

[2008c] NVIDIA. 2008c. PhysX FAQ. http://www.nvidia.com/object/physxfaq.html.

[1998] Olano, M., and Lastra, A. 1998. A Shading Language on Graphics Hardware:

The PixelFlow Shading System. InSIGGRAPH ’98: Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques, 159–168. New York,

NY, USA: ACM.

[2000] Peercy, M. S.; Olano, M.; Airey, J.; and Ungar, P. J. 2000. Interactive Multi-Pass

Programmable Shading. InSIGGRAPH ’00: Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques, 425–432. New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co.

[1984] Porter, T., and Duff, T. 1984. Compositing Digital Images. SIGGRAPH Com-

pututer Graphics18(3):253–259.

82

[2001] Proudfoot, K.; Mark, W. R.; Tzvetkov, S.; and Hanrahan, P. 2001. A Real-Time

Procedural Shading System for Programmable Graphics Hardware. InSIGGRAPH ’01:

Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Tech-

niques, 159–170. New York, NY, USA: ACM.

[2004] Rother, C.; Kolmogorov, V.; and Blake, A. 2004. GrabCut: Interactive Foreground

Extraction using Iterated Graph Cut. InSIGGRAPH ’04, 309–314. New York, NY,

USA: ACM.

[2000] Ruzon, M. A., and Tomasi, C. 2000. Alpha Estimation inNatural Images. InIEEE

Conference on Computer Vision and Pattern Recognition 2000, volume 1, 18–25. Hilton

Head Island, SC, USA: IEEE.

[2000] Schewe, J. 2000. 10 Years of Photoshop.Photo Electronic Imaging16–25.

[2007] Sengupta, S.; Harris, M.; Zhang, Y.; and Owens, J. D. 2007. Scan Primitives

for GPU Computing. InGH ’07: Proceedings of the 22nd ACM SIGGRAPH/EURO-

GRAPHICS Symposium on Graphics Hardware, 97–106. Aire-la-Ville, Switzerland,

Switzerland: Eurographics Association.

[2003] Sherbondy, A.; Houston, M.; and Napel, S. 2003. Fast Volume Segmentation

With Simultaneous Visualization Using Programmable Graphics Hardware. InVIS ’03:

Proceedings of the 14th IEEE Visualization 2003 (VIS’03), 23. Washington, DC, USA:

IEEE Computer Society.

[2007] Wang, J.; Agrawala, M.; and Cohen, M. F. 2007. Soft Scissors: An Interactive

Tool for Realtime High Quality Matting. InSIGGRAPH ’07, 9. New York, NY, USA:

ACM.

83

[2005] Wang, J.; Bhat, P.; Colburn, R. A.; Agrawala, M.; and Cohen, M. F. 2005. Interac-

tive Video Cutout. InSIGGRAPH ’05, 585–594. New York, NY, USA: ACM.

[2000] Wei, L.-Y., and Levoy, M. 2000. Fast Texture Synthesis Using Tree-Structured

Vector Quantization. InSIGGRAPH ’00: Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques, 479–488. New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co.

