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ABSTRACT

Title of Thesis: Real-time Soft Shadows on the GPU via Monte Carlo Sampling

Aaron Curtis, Master of Science, 2009

Thesis directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Realistic shadows present a difficult problem in real-time rendering. While techniques

for rendering hard edged shadows from point light sources are well established, attempts

to incorporate soft shadows typically suffer from inaccuracies or poor performance.

Our algorithm makes use of recent advances in GPU randomization to perform Monte

Carlo sampling of points on an area light source. Rays are then traced to the sampled

points, using the shadow map as a discretized representation of occluders in the scene. The

accuracy of this method can be improved through the use of multiple shadow maps, which

together are able to better approximate the scene geometry.

As with conventional shadow mapping, our method is performed entirely on the GPU,

does not require any precomputation, and can handle fully dynamic scenes with arbitrary

geometric complexity. The quality of the generated shadowsis comparable to that of offline

rendering algorithms such as ray tracing, while performance remains real-time, on par with

existing techniques.
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Chapter 1

INTRODUCTION

Shadows are an essential component of computer-generated images, allowing for eas-

ier recognition of spatial relationships as well as offering aesthetic appeal and increased

realism. However, real-time rendering has until recently been limited to hard shadows,

based on the assumption that light sources are single points. In reality, light sources oc-

cupy an area in space, leading to soft shadows with smooth transitions between fully lit and

fully shadowed points. Rendering such regions of penumbra requires the calculation of the

fraction of light received by each point in the scene.

Shadow mapping (Williams 1978) has become the de facto standard for rendering

shadows in real-time applications, given its relative simplicity and its ability to scale well

with increasing scene complexity. Additionally, it requires no precomputation and can

handle fully dynamic scenes as well as any type of rasterizable geometry. We therefore

introduce a new technique that extends shadow mapping to handle area light sources, while

preserving most of the algorithm’s advantages.

A recent class of soft shadow algorithms (Guennebaud, Barthe, & Paulin 2006;

Schwarz & Stamminger 2007; Attyet al. 2006) has been developed based on the as-

sumption that the depth map employed in traditional shadow mapping can be used as a

discretized representation of all the potential occludersin a scene. We make this same
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assumption, and use the depth map to trace rays through the scene, from potentially shad-

owed points to points on the surface of an area light. To properly estimate the fraction

of illumination received by each point, we rely on recent advances in GPU randomization

(Tzeng & Wei 2008) to perform Monte Carlo sampling of points on the surface of the light,

then combine the results of several samples.

The use of a depth map as a representation of the scene geometry can lead to innac-

curate shadows in the final rendering. The depth map, being a two-dimensional array of

depth values, is unable to represent overlapping objects orto distinguish between thin, pla-

nar objects and ones that extend deep into the scene. We therefore show how our method

can make use of multiple depth maps to improve the shadow quality.

The primary benefit of our technique is the creation of physically accurate soft shad-

ows, resulting in images with a high visual quality. Figure 1.1 shows some sample results.

Performance is comparable to existing state of the art algorithms.

FIG. 1.1. Sample results for our shadowing technique. Scenes were rendered at 20 and 30
frames per second, using a 512x512 texel shadow map and nine rays per fragment.



Chapter 2

RELATED WORK AND BACKGROUND MATERIAL

Simple and effective methods for handling area light sources have long existed in of-

fline rendering. We refer the reader to the survey by Woo et al.(1990) for an exhaustive list.

Ray tracing in particular offers an elegant solution to shadow generation; Cook et al. (1984)

describe modifications to the basic raytracing algorithm that allow for “fuzzy” effects, of

which soft shadows are one of the simplest. Similarly, path tracing as described by Ka-

jiya (1986) allows for soft shadowing by replacing ray tracing’s branching ray tree with a

single probabilistically determined path. At its heart, our work relies on these same basic

concepts, stochastically tracing rays through the scene todetermine light source visibility.

2.1 Real-time Soft Shadowing

A more recent survey (Hasenfratzet al. 2003) catalogs many of the earliest attempts

to render soft shadows in real time, most of which build upon the two major real-time hard

shadowing techniques—shadow mapping (Williams 1978) and shadow volumes (Crow

1977). The latter was most notably extended with penumbra wedges (Akenine-Möller &

Assarsson 2002), which add additional geometric primitives at silhouette edges in object

space. This yields relatively accurate shadows as long as object silhouettes do not overlap.

Some work has been done to address the problem of overlaps (Forest, Barthe, & Paulin

3
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2006), but the method also inherits the general disadvantages of shadow volumes, most

importantly that it scales poorly with scene complexity.

Other methods fare better with respect to scene complexity,but are limited in the types

of scenes they can support, or eschew physical correctness in favor of rough approxima-

tions. Several techniques concentrate only on extending penumbrae out from a traditional

shadow map (Chan & Durand 2003; Wyman & Hansen 2003), while true penumbrae extend

both inward and outward. Brabec and Seidel (2002) search a shadow map and modulate

the illumination based on estimated occluder locations. Soler and Sillion (1998) convolve

images of occluders with the light to determine shadowing, but this is only accurate for

planar objects and requires that occluders and receivers bedisjoint. Still other researchers

(Agrawalaet al. 2000; Heidrich, Brabec, & Seidel 2000) rely on rendering very many

depth maps from multiple points on the surface of a light and combining the results, the

overhead of which limits them to static scenes. Interestingly, in the same work Agrawala

et al. suggest tracing rays through depth maps to sample light source visibility, though they

do not present this as a real-time method. Our technique is similar, but we do not render

multiple depth maps from the surface of the light, as projections from viewpoints so near

to each other can only provide minimal extra information about occluders in the scene.

A more recent class of algorithms generates penumbrae by blurring the shadow map

using a variable-width filter, with the filter width determined by the average occluder depth

in the affected region. These algorithms differ primarily in the filtering methods they em-

ploy, since conventional filtering cannot be applied to shadow maps. Percentage closer

soft shadows (Fernando 2005) rely on percentage closer filtering (PCF) (Reeves, Salesin,

& Cook 1987); Annen et al. (2008) rely on convolution shadow maps (CSMs) (Annenet

al. 2007); and Lauritzen (2007) makes use of variance shadow maps (VSMs) (Donnelly

& Lauritzen 2006). All three can achieve aesthetically pleasing shadows in most scenes,

although they are only physically accurate for planar occluders, similarly to Soler and Sil-
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lion’s (1998) work. These algorithms are also limited by thefact that accurately determin-

ing the average occluder depth can be computationally very expensive, although Annen et

al. note that this can be more efficiently expressed as a convolution. Furthermore, all of the

filtering techniques come with certain drawbacks, be it the inability to support pre-filtering

in the case of PCF, light leaking in case of VSMs, or high memory use with CSMs.

Beginning with the work of Atty et al. (2006) and Guennebaud et al. (2006) (developed

independently), another class of algorithms has been developed based on the assumption

that a depth map can be used to represent occluders in the scene as a set of micro-patches.

The micro-patches are back-projected into world space and then onto the surface of an

area light in order to measure the fraction of light occludedat any point in the scene.

This allows for physically correct shadow calculations, solong as the depth map is able to

adequately represent all the occluders in the scene. Problems can arise in the projection

process when either the patches overlap each other or gaps form between them, leading

to over-darkening or light leaks. Guennebaud et al. explicitly address gaps in their algo-

rithm at the expense of more severe over-darkening from overlaps. Bitmask soft shadows

(Schwarz & Stamminger 2007) eliminate the problems with overlaps, but come with in-

creased computational expense. Performance in general with backprojection is relatively

poor, however these methods can make use of mipmap-like acceleration structures to elim-

inate large regions of potential occluders and achieve real-time frame rates.

As with backprojection, we also treat the depth map as a discretized set of occluders,

but we choose to use this idea to cast rays through the depth map instead. Ray casting in

this manner naturally does not suffer from gaps or overlaps and can still benefit from the

same acceleration structures.
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2.2 Height Field Intersection

Tracing rays through a depth map (or height field) is not a new idea and has recently

made appearances in numerous real-time rendering techniques outside the realm of shad-

owing, including relief mapping (Policarpo, Oliveira, & Comba 2005), refraction render-

ing (Wyman 2005), and caustics mapping (Shah & Konttinen 2007), among others. A full

survey is outside the scope of this paper.

Accurately intersecting a height field is not without its difficulties. The typical method,

as described by Policarpo et al. (2005), uses linear search with some fixed step size, fol-

lowed by binary search when the algorithm suspects the ray has crossed a boundary. As

many authors have noted, the linear stage is prone to aliasing when the scene contains fine

structures, due to undersampling of the depth map. Calculating a completely accurate inter-

section would require taking a sample each time the ray crosses a texel boundary, but this

is impractical with linear search because of the number of samples that would be required.

In relief mapping, a secondary ray is cast from the intersection point to determine

shadowing. The shadow ray uses linear search only, as findingthe exact intersection point

is unnecessary. In this respect, shadowing is a somewhat unique application of height field

intersection; in most other domains, the goal is to find an exact intersection point. Conse-

quently, several intersection algorithms have been developed with faster convergence, such

as the secant method used in interval mapping (Risser, Shah,& Pattanaik 2005) or Shah

and Konttiten’s (2007) method based on Newton-Raphson iterations. These methods are

inappropriate for our purposes however, as they assume thatan intersection always occurs

and that the depth values represent a continuous function.

Other authors suggest the use of pre-computed accelerationstructures such as cone

step mapping (Dummer 2006) or relaxed cone step mapping (Policarpo & Oliveira 2007),

but we require that any such structure be possible to computein real-time, since the shadow
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map must be updated every frame. Pyramidal displacement maps (Oh, Ki, & Lee 2006)

and Maximum mipmaps (Tevs, Ihrke, & Seidel 2008) offer such an approach, and are both

very similar to the hierarchical shadow maps used by Guennebaud et al. (2006). These

are constructed similarly to mipmaps, except that values inthe coarser levels are based on

the maximum values in the finer levels, rather than the average. N-buffers (Décoret 2005)

and multi-scale shadow maps (Schwarz & Stamminger 2007) represent another variant of

the same idea, allowing for better acceleration while beingsomewhat more expensive to

generate. Although these can be thought of primarily as acceleration structures, they also

eliminate the aliasing problems associated with linear search.

As previously mentioned, our algorithm can use multiple depth maps to better approx-

imate the scene geometry. Several existing height field intersection algorithms have been

adapted for use with multiple layers, for similar reasons. Policarpo and Oliveira (2006) ex-

tend relief mapping to four layers, while Chun et al. (2008) extend pyramidal displacement

maps to two.

2.3 Review of Shadow Mapping

Since our method is based on shadow mapping, we present a brief review of the algo-

rithm. Shadow mapping operates in two passes; in the first, the scene is rendered from the

point of view of the light source. Instead of rendering colorvalues to the screen, the first

pass stores the depth of each pixel in a buffer (ormap). In the second pass, the scene is

rendered normally, from the point of view of the eye. Each pixel is classified as shadowed

or unshadowed based on the following procedure:

• Transform the pixel’s 3D coordinates from eye-space into light-space.

• Look up the depth stored in the first pass, using the light-space coordinates.
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• If the pixel’s depth is greater than the stored depth, some other object is occluding

the light’s view of it, so the pixel is shadowed.

2.4 Graphics Hardware

Real-time rendering effectively requires some form of hardware acceleration; there-

fore, we present a brief overview of modern graphics hardware. To begin, any rendering

system requires some method of representing the objects to be displayed, and while there

are a number of ways to describe objects in three-dimensional space, real-time applications

predominantly rely on objects tessellated into meshes of vertices connected by triangles.

Triangle meshes make efficient use of memory and lead to a relatively simple display im-

plementation involving matrix operations. Consequently,graphics hardware has evolved

largely around this approach, and modern systems are capable of handling meshes with

hundreds of thousands, or even millions of triangles.

Figure 2.1 shows a traditional graphics pipeline, composedof several stages. In the

initial (vertex) stage, vertex data is streamed in from mainmemory, and may include spatial

coordinates, normal vectors, texture coordinates, colors, or other application-specific infor-

mation. Next, in the geometry stage, triangles are assembled from the vertex data. The

following stage, rasterization, converts the triangles from three-dimensional objects into

pixels on the screen. The fragment stage then determines thecolor of each pixel (pixels

in this stage are referred to as fragments, since they do not yet fully represent what will

appear on the screen; for example, some may be discared due tooverlapping geometry).

In most cases, the calculations for fragment color are basedon interpolated data from the

vertex stage. The final stage, display, applies blending and/or anti-aliasing to the fragments

and stores them in memory for display on the screen. It is alsopossible for the final stage

to output to a buffer instead, as is the case with the first passin shadow mapping.
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FIG. 2.1. The graphics pipeline. Vertex data streams in from theCPU and is converted to
pixels on the screen in a series of stages. On current hardware, each of the programmable
stages can access texture memory on the GPU.
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FIG. 2.2. The GeForce 8800 architecture. Source: Nvidia. The vertex, geometry, and
fragment stages are handled by unified stream processors.

This model achieves good performance through massive parallelism. For example, in

the vertex stage, no vertex depends on any other, so each may be processed independently;

the same is true for triangles in the geometry stage and fragments in the fragment stage.

Traditional graphics processing units (GPUs) contain several discrete hardware units

with fixed functionality for each stage. However, more recent GPUs contain programmable

stream processorsthat are capable of performing the processing for differentstages. While

some fixed functionality remains, current hardware exposesthe vertex, geometry, and frag-

ment stages to programmers. Figure 2.2 shows a block diagramof the Nvidia GeForce

8800 architecture (NVIDIA 2006), which is the hardware we used for testing. Each green

block represents a processor; clusters of processors are scheduled to process sets of ver-

tices, triangles, or fragments as necessary. Other vendors, such as ATI, offer comparable

hardware.

Our shadowing technique operates primarily in the fragmentstage; consequently we

have implemented it as a fragment program (orshader) for the GPU. While early pro-
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grammable GPUs required that programs be written in assembly, several high-level lan-

guages currently exist that allow access to GPU hardware, with the two primary options

being Microsoft’s HLSL (part of DirectX) or GLSL, which is part of the OpenGL standard.

The features of the two differ only very slightly, but we havechosen GLSL because of its

portability.

The stream processors are in many ways similar to traditional CPUs, so the high level

shading languages were modeled on the C family of languages and support most of the

familiar control structures. Key differences include a focus on four-component vector data

types, a lack of support for pointers, and specialized instructions for accessing texture

memory. Support for integer data types has only recently become available, and we make

use of it in our implementation.



Chapter 3

APPROACH

We begin with a description of the algorithm in its simplest form, using a single depth

map, which is created in the same manner as in conventional shadow mapping, i.e. by

rendering the scene from the point of view of the light sourceand storing depths. However,

it is important to note that with an area light, the projection point must be moved back a

sufficient distance such that the entire light fits within theview frustum. This distance,

light depth, is given by Equation 3.1, wherelight size is the length of one side of a square

light. We restrict the discussion to square lights for simplicity’s sake, though the algorithm

is easily adaptable to rectangular or circular lights as well.

light depth=
light size

2 ∗ tan(fov/2)
(3.1)

Figure 3.1 illustrates the way we set up the light source, along with the corresponding

idealized umbra and penumbra regions resulting from a single occluder. In the region

labeledumbra, any ray drawn from the receiving surface to a point on the light source will

intersect the occluder; likewise, in the region labeledfully lit , no such rays can intersect the

occluder, and in thepenumbra, rays may or may not intersect the occluder.

We then run a second rendering pass from the point of view of the eye. For each

fragment, we trace a ray from a randomly chosen point on the surface of the light to the

12
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FIG. 3.1. An area light source and corresponding shadows. In ourapproach, the depth
map is rendered from a projection point placed behind the center of the light.

fragment (or the reverse direction works just as well), treating the depth map as though

it were de-projected into world space to form a set of micro-occluders that the ray might

intersect. If at any point, the ray passes behind one of thesemicro-patches (that is, the ray is

farther from the light), then the fragment is considered shadowed. An implicit assumption

is that the patches represent the front surfaces of solid objects extending further into the

scene; hence any ray that passes behind one of the micro-patches must strike an object.

In practice, the ray tracing is accomplished by projecting the ray onto the depth map

and sampling points along it linearly, or using hierarchical search methods which we de-

scribe in Section 3.5. Placing the projection point behind the area light as described previ-

ously ensures that every point along the ray projects to a point in the interior of the depth

map; that is, the depth comparison is valid at every point.

Like conventional shadow mapping, our method can suffer from “shadow acne” when

rays are cast to unshadowed surfaces, since the ray endpoints have depths exactly equal to
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those stored in the depth map. To prevent these artifacts, weshorten the rays by a small

bias value. A closely related problem occurs when the surface depth varies within the

area covered by a single depth map texel—some surface pointswill inevitably have depths

greater than those stored in the depth map, much more so if thesurface is at an oblique angle

to the light. Our implementation uses an adaptive biasing formula, given by Equation 3.2,

in which z is the fragment depth (proportional to the depth texel size in world space),w is

the depth map size in texels,n̂ is the surface normal, and̂l is the direction of the light. As

a practical matter,̂n · l̂ must be limited to some small, non-zero value.

bias=

√
2 ∗ z ∗ tan(fov/2)

w ∗ (n̂ · l̂)
(3.2)

In the images that result from our method, points are either fully lit or fully shadowed,

but with the probability of being shadowed based on the fraction of the light source that

is occluded. We use a combination of techniques to convert this into an image in which

points may be partially shadowed; the first is simply to cast multiple rays for each fragment

and average the results. Casting multiple rays quickly becomes computationally expensive,

so we also perform a Gaussian blur of the shadows in screen space. Figure 3.2 shows

the progression from an unblurred, single-ray image to our final result. Note that as the

number of rays per fragment is increased, the images begin toapproach a soft shadow in

appearance, finally reaching the desired result in the last image when the filter is added.

To perform the filtering, it is necessary to render the fully lit scene and the shadow val-

ues into separate buffers, perform the blur on the shadows (in two passes using a separable

filter), and then recombine the two buffers into a final image.A conventional Gaussian fil-

ter would cause unacceptable artifacts by blurring shadowsacross object boundaries in the

scene; therefore, in the second pass we also render depth values in eye space and introduce

adepth sensitivefilter, in which the contribution of each sample is inverselyproportional to



15

(a) penumbra from a large area light

(b) 1 ray (c) 4 rays (d) 9 rays (e) filtered

FIG. 3.2. Progression from probabilistic shadowing to true soft shadows. Images (b)–(d)
show the effect of tracing multiple rays per fragment while (e) adds a filtering pass to (d);
(a) and (e) show the same scene.

the difference between its depth and that of the central sample (plus 1 to prevent division by

zero). A robust implementation would also include normal sensitivity to prevent shadows

from blurring across sharp object edges, but such artifactswere generally not visible in our

test scenes.
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3.1 Monte Carlo Sampling

To obtain sample points on the surface of the light, we require some form of pseudo-

random number generator. However, traditional random number generators are unsuited

to the massively parallel architecture of the GPU, since they operate sequentially; that is,

each call to a traditional generator updates some internal state that is used to create the next

random number. Hence each returned value depends on the previous one, beginning with

some initial seed. This means that generatingn random numbers must takeO(n) time,

regardless of any parallelism available in the hardware.

To avoid this problem, we make use of an idea introduced by Tzeng and Wei (2008),

which is that random numbers can be generated in parallel using a cryptographic hash. We

use the screen coordinates of each fragment as the input to the has, and because crypto-

graphic hashes have the property that minor changes to theirinput (such as moving by one

pixel on the screen) produce dramatic changes in the output,the values generated in our

algorithm are effectively random. Additionally, each hashcan be computed independently,

allowing for good performance on the GPU. The specific hash that we use is a variant of

MD5; the standard MD5 performs 64 “rounds” on its input, while our version is reduced

to 16, allowing for an efficient implementation using a smallamount of shader code. For

reference, our implementation is included in Appendix A. Weexperimented with versions

using even fewer rounds, but these resulted in visible patterns in our output.

It is unlikely that our reduced MD5 would be remain suitable for cryptographic ap-

plications; we merely claim that it is good enough for our purposes. However, we have

verified the effectiveness of the hash using the DIEHARD (Marsaglia 1995) test suite,

which is the de facto standard for testing random number generators. The suite consists

of 15 tests, each of which outputs a varying number of p-values (D’Agostino & Stephens

1986), which should be between 0.01 and 0.99 for a successfulrun (whether a test passes or
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not is actually somewhat ambiguous, with the only sure failure being when all p-values are

exactly zero or one, but we use the previously given range forconsistentency with Tzeng

and Wei (2008)). The reduced MD5 hash passes 11 of the 15 testsusing the linear sequence

1, 2, . . . , n as input. For the full MD5 hash, Tzeng and Wei (2008) claim 15 out of 15 tests

passed, though we are only able to reproduce 12 with certainty. In comparison, the stan-

dard C rand() function passes only six. Tzeng and Wei (2008) have a much more thorough

analysis, and we refer the reader to their work for more information.

Our initial implementation generated a purely random sample over the entire surface

of the light for each ray, but this resulted in somewhat grainy images, with the randomness

being visible in the output even after applying the Gaussianfilter. Consequently, we have

moved to a jittered grid pattern when using tracing multiplerays; e.g., for four rays, the

endpoint of each ray is chosen randomly from within one cell of a 2x2 grid overlaid onto

the light. Figure 3.3 shows the difference between the two methods. Note the slightly

noisier quality of the shadows in the image produced via purerandom sampling.

(a) pure random sampling (b) jittered grid sampling

FIG. 3.3. Effects of different sampling patterns. Images were rendered using two depth
layers and hierarchical search, with nine rays per fragment.

We have found that for scenes with small lights and/or lighting angles that produce
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narrow penumbrae, a 2x2 grid produces visually acceptable results, while a 3x3 grid is

sufficient in most other scenarios. Furthermore, scenes with highly detailed textures hide

the majority of sampling artifacts, meaning a smaller grid may be used in such cases as

well.

3.2 The Inadequacy of a Single Depth Map

The use of a single depth map causes several problems, as a single map does not

provide enough information to adequately reconstruct the scene geometry. The most readily

apparent effect of this is that only outer penumbrae are possible. If a fragment would be

shadowed using conventional shadow mapping, it will alwaysbe shadowed by our method

using a single depth map; that is, any ray cast to the fragmentmust pass behind a micro-

occluder at its endpoint. Furthermore, an outer penumbra created this way often does

not appear as a plausible shadow, because the probability ofa point being shadowed is

discontinuous, being 1.0 everywhere in the interior and less than 0.5 in the penumbra. The

filtering stage is only able to hide the discontinuity for very small penumbrae.

Another problem is that severe aliasing occurs if the ray tracing is performed via linear

search. While this may seem obvious, most applications of ray-height field intersection

are able to refine linear samples once a boundary crossing is detected, using e.g. binary

search. In single-layer shadowing, no such boundary crossing exists (or rather, it is the end

result that we are searching for), so no refinement is possible. While hierarchical search

methods solve the aliasing problem, linear search becomes viable if a second depth layer is

introduced, and may be desirable due to its ease of implementation.
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3.3 Ray Tracing with Two Depth Layers

Adding a second depth map can elegantly solve the problems described above, and we

consider it the minimum for achieving quality results. Since the primary drawback of a sin-

gle depth map is that it does not approximate occluder geometry well enough, the second

map should be rendered from a point of view that provides the most additional information

about the scene. A logical choice, then, would be to render depths from a point of view

directly opposite the light, facing in the reverse direction. This would capture the surfaces

farthest from the light, and would allow us to measure the sizes of objects in the scene in

addition to their positions. Hence we refer to the result as thefar depth layer, and the orig-

inal one asnear. Figure 3.4 illustrates how occluding geometry can be reconstructed using

multiple depth layers. Both the far and near depth layers effectively form hulls around

occluders, with the intersection of the two hulls being the reconstructed geometry. Stated

another way, the intersection of the hulls is the closest approximation to the actual geom-

etry that can be made using only the information contained inthe depth maps. Note that

information about the geometry may still be lost in the two-layer reconstruction, partic-

ularly for scenes with high depth complexity, in which gaps may exist between multiple

occluders, for example. We return to this problem in Section3.4.

Since placing the viewpoint opposite the light would require prior calculation of the

extent of the scene, in our implementation we obtain a similar result by rendering the sec-

ond depth map from the same point of view as the first, but with front face culling enabled

and the z-buffer depth test reversed, thus capturing the back surfaces of the deepest objects

in the scene. Since we are only interested in occluders, our method requires that “pure re-

ceivers” (such as the ground plane in our sample images) be removed from the scene when

rendering depths, so as not to interfere with obtaining information about occluder geometry.

Note that although we require classification of non-occluders, the remaining objects may
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FIG. 3.4. Geometry reconstruction using two depth layers. Possible occluders are bounded
between the near layer (red) and the far layer (blue). It is possible to use a third depth layer
(not shown) to verify the existence of occluders inside the bounded volume.

still act as receivers, meaning that unlike other methods that use geometry classification,

we retain support for self-shadowing.

We treat the two depth layers consistent with the assumptionthat they represent the

boundaries of solid objects, so that when tracing rays, an intersection occurs when a ray

passes anywhere between the two layers. If linear search is used, a useful idea is that any

point along the ray, not between the two layers, may be classed as either in front of or

behind any potential occluders. Transitions between the two states can then be treated as

candidates for refinement using binary search, eliminatingmuch (though not all) of the

aliasing that exists when using a single layer. There is one caveat, however; because we

generate the layers by first clearing the depths in the near layer to 1 and those in the far layer

to 0, there can exist situations when a point is both in front of the near layer and behind the

far layer. We class these points separately, and refine the search on any transitionsto an “in
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front of” state orfrom a “behind” state. In cases when the the binary refinement doesnot

detect an intersection, the algorithm returns to linear search at the farther point.

3.4 Additional Depth Layers

We treat the entire volume between the two depth layers as being occupied by a solid

object. In reality, objects in the scene are likely to have hollow regions and concavities that

cannot be represented by the depth layers. The visual effectof these details on the primary

receiving surfaces in the scene is minor in most cases, but they can have a noticeable impact

when occluders exhibit significant self-shadowing, as shown in Figure 3.5. With two depth

layers, rays cast to points inside the bounded volume will always result in shadows, limiting

self-shadowing to outer penumbrae as was described previously for single depth layers.

The shadow cast by the dragon’s horn in Figure 3.5(a) is a result of points being inside the

volume bounded by the two depth layers.

(a) two depth layers (b) three depth layers

FIG. 3.5. Self Shadowing. A third depth layer (b) allows for correct softening of the
shadow cast by the dragon’s horn. Images were generated using 4 rays per fragment; (a)
uses hierarchical search while (b) uses linear/binary.

An option for gaining more information about occluder geometry is to use depth peel-
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ing to generate additional depth layers parallel to the existing two. However, on current

graphics hardware this would require another rendering pass for each layer, so we do not

consider it practical. Instead, we note that we can make use of depths rendered from the

point of view of the eye, since they must be generated eventually, regardless of whether or

not we use them for shadowing. To do so, we reformulate our algorithm as an application

of deferred shading, which executes according to Algorithm1.

• Render the unshadowed scene from the eye point, storing colo rs
and depths in separate buffers.

• Render the near and far depth layers from the point of view of
the light.

• Run a shader over the eye-space depth buffer:

– Recover the world space coordinates of each fragment based o n
the depth and texture coordinates.

– Trace shadow rays using all three available depth maps.

– Write shadow values to an output buffer.

• Filter the shadow buffer.

• Combine the shadow buffer with the color buffer.

Algorithm 1: Our shadowing technique formulated using deferred shadingand three depth
maps.

With the linear search model that we have described up to thispoint, it is a simple

matter to make use of the eye-space depth map; any time a sample point along the ray

would be inside the volume bounded by the near and far depth layers, instead of declaring

an intersection, test if the point is visible from the eye anddeclare an intersection only if it

is not. In Figure 3.5(b), this process results in a softer shadow cast by the dragon’s horn.

Coincidentally, we observe a significant performance increase when using deferred

shading, since no ray tracing is wasted on fragments that will later be z-culled.
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3.5 Hierarchical Search

Until this point we have focused our discussion on linear/binary search as the method

for tracing rays, since it is the simplest approach to implement. However, it does come

with significant drawbacks. The linear stage suffers from aliasing and the performance is

highly inconsistent, dropping off severely when the binaryrefinement stage does not find

an intersection on the first try. As an alternative, we have implemented ray tracing using a

hierarchical data structure that replaces the near and far depth layers. This both eliminates

aliasing and provides better performance.

Our data structure is most directly based on the N-buffer (D´ecoret 2005), although we

make some modifications to it in the same manner as Schwarz andStamminger (2007).

To briefly explain, the N-buffer is a texture stack containing log2(w) + 1 levels for square

textures of widthw. A texel at leveln stores the maximum value of the surrounding texels

in a neighborhood of size2n at level 0. We use the termsfineandcoarseto refer to levels

with smaller and larger neighborhoods, since the structurebears some resemblance to a

mipmap. In Décoret’s (2005) original formulation, texelswere located at the lower-left

corner of their neighborhoods; we move them approximately to the center, which allows

the buffer to provide more information near texture edges. Instead of storing a simple

maximum, we use multi-channel textures to store the minimumdepth of the near depth

layer (zmin
near) and the maximum depth of the far layer (zmax

far ). We also store the maximum

depth of the near layer (zmax
near), though this is not directly used in ray tracing and will be

explained in the next section. Each level in the N-buffer canbe efficiently constructed by

running a shader that finds the min or max of four samples from the previous level, with

level 0 being copies of the original depth maps. Figure 3.6 illustrates this process.

We use Algorithm 2 to trace rays through the N-buffer. Since we trace rays from the

light to the fragment, the primary interaction is withzmin
near. We use the termsteppingto
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(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

FIG. 3.6. A four-level N-buffer. A texel at leveln stores the maximum luminosity of the
surrounding texels in a neighborhood of size2n at level 0. The texels highlighted in black
have neighborhoods highlighted in red, and were calculatedby taking the maximum of the
four texels from the previous level, at the locations markedwith red Xs.

refer to the portion of the ray that has been searched; e.g., the ray start point is at stepping 0

and the end point is at stepping 1. For readability, terminalcases are described separately.

Ascending in the N-buffer is optional, but we have found it useful, since otherwise the

algorithm can in rare cases spend many iterations stepping one texel at a time at the finest

level. Terminal cases are as follows:

• If the ray passes betweenzmin
near andzmax

far at level 0 of the N-buffer, an intersection

has occurred.

• If at any point the stepping advances beyond the endpoint of the ray, no intersection

can occur.

A few difficulties arise in the implementation of this algorithm, which may not be

apparent at first. The ray stepping is not aligned to texel boundaries in the N-buffer, so

when calculating neighborhood sizes the actual width used is2n − 1, plus some fractional

value to align to the nearest texel boundary. Also, because our depth maps are created using

perspective projections, the stepping has different values in world space and texture space,

so frequent conversion is required. These two facts, along with the overall structure of
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the algorithm, lead to much more complicated shader code relative to linear/binary search.

Even so, the faster convergence of hierarchical search yields noticeably better performance.

3.6 Penumbra Classification

Since we typically cast several rays for each shaded fragment, there can be signifi-

cant overhead even if every ray is traced quickly. It is therefore advantageous to classify

fragments as fully shadowed, fully lit, or potentially in penumbra, since in the former two

cases we can avoid casting any rays at all. We employ a method similar to Guennebaud

et al. (2006), in which we find the minimum and maximum occluder depth in the near

depth layer (zmin
near andzmax

near) that can be encountered by any possible ray. We then classify

according to the fragment depth,z:

• If z ≤ zmin
near, then nothing can occlude the fragment and it is fully lit.

• If z ≥ zmax
near, then every possible ray will hit an occluder, so the fragment is fully

shadowed.

Note that the second condition becomes invalid when using three depth maps, since rays

are allowed to travelbetweenoccluders. In this case we only test the first condition.

Values forzmin
near and zmax

near can easily be obtained from the coarsest level of the N-

buffer; however, these values cover the entire scene and tend to not lead to useful clas-

sification. Instead, we use the value ofzmin
near as the initial step in an iterative refinement

scheme (again, similarly to Guennebaud et al. (2006)). The region of the depth map that

might be sampled by any possible rays can be calculated usingsimilar triangles, as shown

in Figure 3.7, or according to Equation 3.3;n is the distance from the light to the projection

point andsize is a fraction of the depth map width.
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FIG. 3.7. Determination of the portion of the depth map containing potential occluders. All
possible rays from a point in the scene intersect a plane at the minimum occluder depth.
The intersection region projects onto a subset of the depth map.

size=
n(z − zmin

near)

zmin
near(z − n)

(3.3)

We use the computed region to find a less conservative value ofzmin
near by sampling a

finer level of the N-buffer. Two iterations are generally sufficient to produce a tight bound

around penumbrae in the scene. Figure 3.8 shows the results of this method.

3.7 Other Acceleration Techniques

When casting rays, it is possible in many cases to immediately classify a ray as inter-

secting or non-intersecting and thus avoid having to perform expensive calculations for it.

Figure 3.8 shows these cases in green, and we identify three scenarios in which they occur:

• If the surface normal faces opposite the ray (i.e. their dot product is negative), the ray
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FIG. 3.8. Classification of fragments. Green areas are potentially in penumbra, while full
calculations are only performed in blue areas.

is considered intersecting and results in a shadow. With small area lights, performing

this test on a per fragment basis rather than per ray may produce acceptable results,

since all possible rays would have similar directions.

• If the endpoint of a ray is inside a solid object, the ray must intersect an occluder.

While rays are neveractuallycreated with endpoints inside objects, this test is useful

when using two depth layers, as it catches instances of apparent self-shadowing early,

using only a single texture fetch at the finest level of the N-buffer. Due to biasing,

this test also applies to back-facing surfaces and is usefulif the first test cannot be

applied (e.g. with deferred shading, we might want to avoid rendering normals).

• Lastly, we perform the fragment classification discussed previously, but using a re-

gion in the depth map that contains the projection of the current ray, rather than that

of all possible rays. This region is potentially much smaller, yielding a more accurate

determination of whether or not the ray can intersect an occluder.

The last scenario can be made more useful by shortening the rays, thus making their pro-

jections smaller. We shorten the rays by advancing their endpoints up tozmax
far , and their
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start points down tozmin
near, as determined in the fragment classification step. This process

is shown in Figure 3.9. For rays that require full intersection calculations, ray shortening

produces faster convergence to a solution, since the starting point in the N-buffer is moved

towards the finer levels.

FIG. 3.9. Ray shortening. Ray endpoints are modified based on thebounds for possible
occluder depths, resulting in a smaller affected region of the depth map.
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• Determine an initial level in the N-buffer such that a
neighborhood is able to contain the entire texture-space
projection of the ray.

• Find z
min
near for the neighborhood containing the ray.

• Set the initial stepping to the point where the ray intersect s
the plane at z

min
near.

• Descend one level in the N-buffer and place the neighborhood in
texture space such that it contains the intersection point a nd
as much of the forward portion of the ray as possible.

• Repeat the following until terminal cases are reached:

– Find z
min
near and z

max
far in the current neighborhood.

– If, in the current neighborhood, a portion of the ray passes
between z

min
near and z

max
far :

∗ Find the point where the ray intersects the plane at z
min
near.

∗ If the intersection point is farther along the ray than the
current stepping, advance the stepping to the intersection
point.

∗ Descend one level in the N-buffer, and adjust the current
neighborhood to contain the forward portion of the ray.

– Otherwise, the current portion of the ray does not intersect
anything, so:

∗ Advance the ray stepping a distance equal to the current
neighborhood size.

∗ Ascend one level in the N-buffer, and adjust the current
neighborhood to contain the forward portion of the ray.

Algorithm 2: Hierarchical search using an N-buffer
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RESULTS

We have implemented two versions of our algorithm, one usinglinear/binary search

and three depth layers, and one using hierarchical search with two layers. By default, both

use deferred shading, although we also present performancenumbers for the hierarchical

search version with deferred shading disabled. Also, whilethe linear/binary search im-

plementation does not use the N-buffer directly for ray tracing, it does make use of all

the associated acceleration techniques. We consider the N-buffer (or an equivalent data

structure) essential to our technique. Figure 1.1 shows some sample renderings using our

method, and Figures 4.1 and 4.2 show some additional cases with texturing disabled to

better show any artifacts. The reference images in both cases were generated by averag-

ing 4096 point lights (about 40 seconds per frame). Note the broad shadows cast against

against the far wall by the dragon in Figure 1.1(a), or cast onthe floor by the Buddha statue

in Figure 1.1(b). Both cases correctly show relatively sharp contact shadows where the

objects touch the floor. Though some minor discrepancies arehighlighted in Figures 4.1

and 4.2, our results (particularly Figures 4.1(b) and 4.2(b)) are largely indistinguishable

from the reference images, especially when compared against the results for conventional

shadow mapping. Also note the darkening of the shadow directly beneath the elongated

cube in Figures 4.2(a) and 4.2(b); this is a difficult case forother shadowing algorithms,

30
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since the shadow is a result of the object’s extent perpendicular to the light, which cannot

be determined with a single shadow map.

4.1 Limitations

Being based on ray tracing, our method has the potential to give physically accurate

shadows. However, there are a few cases where discrepanciescan appear. We require

that the depth maps be able to adequately represent occludergeometry, and while this is

most often the case, artifacts can arise in the form of over-dark self shadowing for com-

plex occluders. Figure 3.5 specifically shows this effect, although the hierarchical results

in Figures 4.1(a) and 4.1(b) also contain a moderate exampleof it. Compare the blue high-

lighted areas to those in Figures 4.1(c) and 4.1(d); in the former, the umbrae are slightly

overextended.

Other artifacts are related to our post-filtering process. In scenes with especially wide

penumbrae, our method can produce uneven looking shadows due to undersampling of the

light source visibility, in which case the filtering is insufficient. The highlighted region of

Figure 4.2(a) demonstrates this effect. The opposite case can occur as well, in which the

filtering process excessively blurs fine details in the shadow. The shadow of the dragon’s

horn in Figures 4.1(a), 4.1(b), and 4.1(c) (highlighted in red) is a good example; the shadow

in the reference image (Figure 4.1(d)) is thinner and darkerin comparison.

All of these problems can be dealt with by simply adding more depth layers or casting

more rays (which would reduce the need for post-filtering). Both come at a cost in perfor-

mance, and while we have found that casting four or nine rays per fragment represents a

good balance between visual quality and computational expense, it is conceivable that with

future hardware this balance might shift upwards.
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4.2 Performance

Performance results were obtained on an Nvidia 8800 GTS (320MB) with driver

version 180.11, running on Ubuntu Linux 8.10. Our implementation uses OpenGL 2.1

with shaders written in GLSL. We tested two scenes, the dragon shown in Figure 4.1 and

the elongated cube shown in 4.2. The dragon model contains 100,000 triangles, while the

cube shows the effects of reduced depth complexity and also eliminates any bottlenecks

due to triangle count.

Tables 4.1 and 4.2 show frame rates at various shadow map resolutions, for the two

scenes we tested. Figure 4.3 summarizes the results graphically for the hierarchical search

implementation with deferred shading, which is the best version by a large margin. The

hierarchical / deferred shading frame rates are well withinthe range that should be consid-

ered real-time, particularly with a shadow map resolution of 512x512 or less. We consider

512x512 to be the ideal resolution for our algorithm on current hardware; performance does

not improve dramatically at lower resolutions when rendering relatively complex scenes

such as the dragon, while at much lower resolutions temporalaliasing becomes a problem.

Note that the shadow map resolution is limited to 1024x1024 and below due to memory

constraints on the N-buffer.

Tables 4.3 and 4.4 show results at various screen resolutions, with Figure 4.4 sum-

marizing the hierarchical / deferred shading results graphically. The performance drop-off

with increasing resolution should be expected, since the screen resolution directly affects

the number of rays that must be traced. However, frame rates remain usable at all resolu-

tions tested, up to 1280x1024.

Of the two search methods, linear/binary search is more sensitive to geometric com-

plexity, due to the fact that as more detail appears in the depth layers, the algorithm attempts

binary refinement more often. Hierarchical search is also somewhat sensitive to geomet-
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Search Type Rays
Deferred Shadow Map Resolution
Shading 256x256 512x512 1024x1024

hierarchical

2x2
yes

46 40 28
3x3 37 34 21
2x2

no
30 26 18

3x3 18 16 12

linear/binary
2x2

yes
25 18 15

3x3 12 11 10

Table 4.1. Performance scaling with shadow map resolution for the dragon scene
(Figure 4.1). Screen resolution is 1024x768. Values are in frames per second.

Search Type Rays
Deferred Shadow Map Resolution
Shading 256x256 512x512 1024x1024

hierarchical

2x2
yes

70 50 35
3x3 60 45 31
2x2

no
66 47 34

3x3 50 44 30

linear/binary
2x2

yes
36 32 23

3x3 25 22 17

Table 4.2. Performance scaling with shadow map resolution for the elongated cube scene
(Figure 4.2). Screen resolution is 1024x768. Values are in frames per second.

ric complexity, since increased detail causes it to spend more iterations stepping through

the finer levels of the N-buffer. Although not reflected in thenumbers, performance with

linear/binary search is very inconsistent; we believe hierarchical search should be the pre-

ferred implementation, even ignoring average frame rates.As should be expected, deferred

shading is more beneficial in complex scenes, nearly doubling the frame rate in a few cases.

The benefits of deferred shading vastly outweigh the cost of an additional rendering pass

in screen-space, so it should be preferred in any implementation as well.

The results show that hierarchical search is more sensitiveto depth map resolution,



34

Search Type Rays
Deferred Screen Resolution
Shading 800x600 1024x768 1280x1024

hierarchical

2x2
yes

45 40 32
3x3 40 34 22
2x2

no
33 26 19

3x3 20 16 12

linear/binary
2x2

yes
27 18 14

3x3 17 11 8

Table 4.3. Performance scaling with screen resolution for the dragon scene (Figure 4.1).
Shadow map resolution is 512x512. Values are in frames per second.

Search Type Rays
Deferred Screen Resolution
Shading 800x600 1024x768 1280x1024

hierarchical

2x2
yes

74 50 41
3x3 61 45 34
2x2

no
70 47 41

3x3 49 44 35

linear/binary
2x2

yes
41 32 23

3x3 31 22 15

Table 4.4. Performance scaling with screen resolution for the cube scene (Figure 4.2).
Shadow map resolution is 512x512. Values are in frames per second.

but a reason for this is that we used a fixed step size for the linear portion of linear/binary

search; that is, hierarchical search becomes more accurateat higher depth map resolutions

while our implemention of linear/binary search does not. Both methods are affected by time

required to construct the N-buffer, which is likely the largest component of depth map res-

olution sensitivity. Caching is also a factor; while our Monte Carlo sampling causes com-

pletely random texture access, the ray shortening procedure described previously should

keep the accesses within a small neighborhood of each other,thus preventing at least some

cache misses. This effect is reduced with increased texturesize.
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Generally speaking, our performance numbers are on par withcurrent methods for

rendering physically plausible soft shadows, e.g. backprojection (Guennebaud, Barthe, &

Paulin 2006) or bitmask (Schwarz & Stamminger 2007) soft shadowing (the former being

slightly faster than our method, and the latter slightly slower). This is not surprising, since

we use many of the same acceleration techniques. However, both of the aforementioned

methods treat occluders as sets of planar patches or quads, rather than solid volumes as in

our approach; hence neither method is able to make good use ofthe additional information

provided by multiple depth maps. Furthermore, both must take special measures to prevent

problems with overlaps or gaps between micro-occluders; inthe case of backprojection,

this leads to unavoidable over-darkening. Ray tracing naturally avoids such problems.

4.3 Impact of the MD5 Hash

Our reliance on the reduced MD5 hash for random number generation introduces an

unknown factor into our algorithm’s performance, since it differs from the usual practice

of using a handful of carefully selected fixed sample positions to represent a jittered grid.

However, in our testing the hash did not incur a significant performance penalty. Removing

it from the code entirely resulted in a frame rate increase of2-3 frames per second at

most (less than 10%), and 0 in many cases. While the hash does involve a relatively large

amount of computation, even for the reduced 16-round version, our implementation does

not involve any looping or branching, and requires few registers. Consequently it maps

well to the capabilities of GPU hardware.

In comparison, it is very unlikely that using pre-generatedsample positions would

offer better quality, since even if the samples were createdby a high-quality random number

generator, it is unlikely to be noticeably better than MD5 (we refer to the DIEHARD results

described in Section 3.1). Furthermore, a very large numberof distinct sample points would
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be required. It is also worth noting that using fixed sample points does not map as well to

GPU hardware, since the process must involve a memory lookup. Current hardware favors

pure computation over memory access, and the gap between thetwo is likely to widen in

the future.
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(a) hierarchical, 2x2 (b) hierarchical, 3x3

(c) linear/binary, 3x3 (d) reference image

(e) conventional shadow mapping

FIG. 4.1. Shadowing of the dragon model. Labels show the search type and number of
rays per fragment. Shadow map size is 512x512.



38

(a) hierarchical, 2x2 (b) hierarchical, 3x3

(c) reference image (d) conventional shadow mapping

FIG. 4.2. Shadowing of an elongated cube, a difficult case for many soft shadowing algo-
rithms. Labels show the search type and number of rays per fragment. Shadow map size is
512x512.
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FIG. 4.3. Shadow map resolution scaling for hierarchical search with deferred shading
enabled. Labels show the number of rays per fragment and which scene was used.

FIG. 4.4. Screen resolution scaling for hierarchical search with deferred shading enabled.
Labels show the number of rays per fragment and which scene was used.



Chapter 5

CONCLUSION

We have demonstrated physically accurate soft shadowing inreal-time, via stochastic

ray tracing of depth maps. We believe that ray tracing in thismanner offers a higher visual

quality than current state of the art real-time shadowing algorithms, and we have found

that it can be accomplished with similar levels of performance on current graphics hard-

ware. Furthermore, since our work is based on conventional shadow mapping, it should be

possible to implement it within existing software frameworks.

Our technique relies on depth maps to approximate occluder geometry, and we con-

sider two depth maps the minimum to achieve a good reconstruction, which is necessary for

high quality shadows. Additional depth maps are beneficial,but returns diminish rapidly

beyond the second or third. We also consider the use of a hierarchical data structure es-

sential for accelerating the algorithm; while such a structure is directly useful for tracing

individual rays, we also use it to eliminate a large number ofrays entirely.

5.1 Future Work

Textured light sources are possible with our method. Preliminary work indicates that

visually accurate results can be obtained by allowing each ray to sample a low frequency

texture on the surface of the light and return a luminosity value, rather than a simple binary
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shadowed or lit determination. Going farther, it should be possible for each ray to return

an RGB value corresponding to the received luminosity on each color channel. This would

make our technique useful for environment mapping, for example.

There also exists the possibility of making alterations to the N-buffer; one direction

could be to make use of the fact that the neighborhood sizes ateach level need not be

powers of two. Some investigation would be needed to determine if an optimal formula

exists for the neighborhoods, but at the very least, it should be possible to decrease the

number of necessary levels by using e.g. powers of three. This would reduce the memory

requirement, which is the N-buffer’s main drawback. We allow that for practical purposes,

others may want to implement our technique using more conventional image pyramids, and

it remains to be seen how much of an impact on performance thiswould have.

We also expect that other performance improvements to the algorithm are possible.

Of note is the fact that our depth maps were all created using perspective projection, while

orthogonal projection should in theory work just as well forthe purpose of ray tracing.

This would simplify the shader code a great deal by eliminating the need to convert the

ray stepping between texture and world space. However, a more interesting possibility is

that multiple lights may be able to share a single orthogonally projected shadow map; one

could imagine a framework in which a few axis-aligned depth maps are generated for an

arbitrary number of lights throughout the scene.



Appendix A

REDUCED MD5 HASH IMPLEMENTATION

The following is our implementation of the reduced 16-roundMD5 hash in GLSL.

Screen coordinates are used for the seed value. Following Tzeng and Wei’s (2008) example,

we allow the use of a key value to further scramble the seed.

uvec4 md5rand(uvec4 seed, unsigned int key)
{

unsigned int d00 = seed.x ˆ key;
unsigned int d01 = seed.y ˆ key;
unsigned int d02 = seed.z ˆ key;
unsigned int d03 = seed.w ˆ key;

// Values commented out as they do not
// actually affect the calculation

//unsigned int d04 = 0x80000000u;
//unsigned int d05 = 0u;
//unsigned int d06 = 0u;
//unsigned int d07 = 0u;
//unsigned int d08 = 0u;
//unsigned int d09 = 0u;
//unsigned int d10 = 0u;
//unsigned int d11 = 0u;
//unsigned int d12 = 0u;
//unsigned int d13 = 0u;
//unsigned int d14 = 0u;
//unsigned int d15 = 0x80u;
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uvec4 digest = uvec4(0x01234567u, 0x89ABCDEFu,
0xFEDCBA98u, 0x76543210u);

uvec4 tD = digest;
unsigned int Ft;
unsigned int rot_temp;

Ft = (tD.x & tD.y) | ((˜tD.x) & tD.z);

// The number on the next line is sin(1) * 2ˆ32.
// Likewise, the constants in the other blocks are
// sin(2), sin(3), etc.

rot_temp = tD.x + Ft + d00 + 0xD76AA478u;
tD.x = tD.y + (rot_temp << 7u) + (rot_temp >> 25u);
tD = tD.yzwx;
digest += tD;

Ft = (tD.x & tD.y) | ((˜tD.x) & tD.z);
rot_temp = tD.x + Ft + d01 + 0xE8C7B757u;
tD.x = tD.y + (rot_temp << 12u) + (rot_temp >> 20u);
tD = tD.yzwx;
digest += tD;

Ft = (tD.x & tD.y) | ((˜tD.x) & tD.z);
rot_temp = tD.x + Ft + d02 + 0x242070DBu;
tD.x = tD.y + (rot_temp << 17u) + (rot_temp >> 15u);
tD = tD.yzwx;
digest += tD;

Ft = (tD.x & tD.y) | ((˜tD.x) & tD.z);
rot_temp = tD.x + Ft + d03 + 0xC1BDCEEFu;
tD.x = tD.y + (rot_temp << 22u) + (rot_temp >> 10u);
tD = tD.yzwx;
digest += tD;

/////////////////////////////////////////////////// /

Ft = (tD.z & tD.x) | ((˜tD.z) & tD.y);
rot_temp = tD.x + Ft + d01 + 0xF61E2562u;
tD.x = tD.y + (rot_temp << 5u) + (rot_temp >> 27u);
tD = tD.yzwx;
digest += tD;
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Ft = (tD.z & tD.x) | ((˜tD.z) & tD.y);
rot_temp = tD.x + Ft / * + d06 * / + 0xC040B341u;
tD.x = tD.y + (rot_temp << 9u) + (rot_temp >> 23u);
tD = tD.yzwx;
digest += tD;

Ft = (tD.z & tD.x) | ((˜tD.z) & tD.y);
rot_temp = tD.x + Ft / * + d11 * / + 0x265E5A52u;
tD.x = tD.y + (rot_temp << 14u) + (rot_temp >> 18u);
tD = tD.yzwx;
digest += tD;

Ft = (tD.z & tD.x) | ((˜tD.z) & tD.y);
rot_temp = tD.x + Ft + d00 + 0xE9B6C7ABu;
tD.x = tD.y + (rot_temp << 20u) + (rot_temp >> 12u);
tD = tD.yzwx;
digest += tD;

/////////////////////////////////////////////////// /

Ft = tD.x ˆ tD.y ˆ tD.z;
rot_temp = tD.x + Ft / * + d05 * / + 0xFFFA3942u;
tD.x = tD.y + (rot_temp << 4u) + (rot_temp >> 28u);
tD = tD.yzwx;
digest += tD;

Ft = tD.x ˆ tD.y ˆ tD.z;
rot_temp = tD.x + Ft / * + d08 * / + 0x8771F681u;
tD.x = tD.y + (rot_temp << 11u) + (rot_temp >> 21u);
tD = tD.yzwx;
digest += tD;

Ft = tD.x ˆ tD.y ˆ tD.z;
rot_temp = tD.x + Ft / * + d11 * / + 0x6D9D6122u;
tD.x = tD.y + (rot_temp << 16u) + (rot_temp >> 16u);
tD = tD.yzwx;
digest += tD;

Ft = tD.x ˆ tD.y ˆ tD.z;
rot_temp = tD.x + Ft / * + d14 * / + 0xFDE5380Cu;
tD.x = tD.y + (rot_temp << 23u) + (rot_temp >> 9u);
tD = tD.yzwx;
digest += tD;
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/////////////////////////////////////////////////// /

Ft = tD.y ˆ (tD.x | (˜tD.z));
rot_temp = tD.x + Ft + d00 + 0xF4292244u;
tD.x = tD.y + (rot_temp << 6u) + (rot_temp >> 26u);
tD = tD.yzwx;
digest += tD;

Ft = tD.y ˆ (tD.x | (˜tD.z));
rot_temp = tD.x + Ft / * + d07 * / + 0x432AFF98u;
tD.x = tD.y + (rot_temp << 10u) + (rot_temp >> 22u);
tD = tD.yzwx;
digest += tD;

Ft = tD.y ˆ (tD.x | (˜tD.z));
rot_temp = tD.x + Ft / * + d14 * / + 0xAB9423A7u;
tD.x = tD.y + (rot_temp << 15u) + (rot_temp >> 17u);
tD = tD.yzwx;
digest += tD;

Ft = tD.y ˆ (tD.x | (˜tD.z));
rot_temp = tD.x + Ft / * + d05 * / + 0xFC93A039u;
tD.x = tD.y + (rot_temp << 21u) + (rot_temp >> 11u);
tD = tD.yzwx;
digest += tD;

return digest;
}
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[12] Décoret, X. 2005. N-buffers for efficient depth map query. Computer Graphics Forum

24(3):393–400.

[13] Donnelly, W., and Lauritzen, A. 2006. Variance shadow maps. InI3D ’06: Pro-

ceedings of the 2006 symposium on Interactive 3D graphics and games, 161–165. New

York, NY, USA: ACM.

[14] Dummer, J. 2006. Cone step mapping: An iterative ray-heightfield intersection al-

gorithm. Available online at http://www.lonesock.net/files/ConeStepMapping.pdf [Ac-

cessed: 1 May 2009].



48

[15] Fernando, R. 2005. Percentage-closer soft shadows. InSIGGRAPH ’05: ACM

SIGGRAPH 2005 Sketches, 35. New York, NY, USA: ACM.

[16] Forest, V.; Barthe, L.; and Paulin, M. 2006. Realistic soft shadows by penumbra-

wedges blending. InGH ’06: Proceedings of the 21st ACM SIGGRAPH/EUROGRAPH-

ICS symposium on Graphics hardware, 39–46. New York, NY, USA: ACM.

[17] Guennebaud, G.; Barthe, L.; and Paulin, M. 2006. Real-time soft shadow mapping

by backprojection. InEurographics Symposium on Rendering (EGSR), Nicosia, Cyprus,

26/06/2006-28/06/2006, 227–234. http://www.eg.org/: Eurographics.

[18] Hasenfratz, J.-M.; Lapierre, M.; Holzschuch, N.; and Sillion, F. 2003. A survey of

real-time soft shadows algorithms.Computer Graphics Forum22(4):753–774.

[19] Heidrich, W.; Brabec, S.; and Seidel, H.-P. 2000. Soft shadow maps for linear lights.

In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, 269–280.

London, UK: Springer-Verlag.

[20] Kajiya, J. T. 1986. The rendering equation. InSIGGRAPH ’86: Proceedings of

the 13th annual conference on Computer graphics and interactive techniques, 143–150.

New York, NY, USA: ACM.

[21] Lauritzen, A. 2007. Summed-area variance shadow maps.In Nguyen, H., ed.,GPU

Gems 3. Addison-Wesley Professional. 157–182.

[22] Marsaglia, G. 1995. The Marsaglia random number CDROM including the diehard

battery of tests of randomness. Available online at http://www.stat.fsu.edu/pub/diehard/

[Accessed: 1 May 2009].

[23] NVIDIA. 2006. Nvidia geforce 8800 GPU architecture overview. Technical Brief.



49

[24] Oh, K.; Ki, H.; and Lee, C.-H. 2006. Pyramidal displacement mapping: a GPU based

artifacts-free ray tracing through an image pyramid. InVRST ’06: Proceedings of the

ACM symposium on Virtual reality software and technology, 75–82. New York, NY,

USA: ACM.

[25] Policarpo, F., and Oliveira, M. M. 2006. Relief mappingof non-height-field surface

details. InI3D ’06: Proceedings of the 2006 symposium on Interactive 3Dgraphics and

games, 55–62. New York, NY, USA: ACM.

[26] Policarpo, F., and Oliveira, M. M. 2007. Relaxed cone stepping for relief mapping.

In Nguyen, H., ed.,GPU Gems 3. Addison-Wesley Professional. 409–428.

[27] Policarpo, F.; Oliveira, M. M.; and Comba, J. a. L. D. 2005. Real-time relief mapping

on arbitrary polygonal surfaces. InI3D ’05: Proceedings of the 2005 symposium on

Interactive 3D graphics and games, 155–162. New York, NY, USA: ACM.

[28] Reeves, W. T.; Salesin, D. H.; and Cook, R. L. 1987. Rendering antialiased shadows

with depth maps. InSIGGRAPH ’87: Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, 283–291. New York, NY, USA: ACM.

[29] Risser, E.; Shah, M.; and Pattanaik, S. 2005. Interval mapping. Technical report,

University of Central Florida.

[30] Schwarz, M., and Stamminger, M. 2007. Bitmask soft shadows. Computer Graphics

Forum26(3):515–524.

[31] Shah, M. A., and Konttinen, J. 2007. Caustics mapping: An image-space tech-

nique for real-time caustics.IEEE Transactions on Visualization and Computer Graph-

ics 13(2):272–280.



50

[32] Soler, C., and Sillion, F. X. 1998. Fast calculation of soft shadow textures using con-

volution. InSIGGRAPH ’98: Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, 321–332. New York, NY, USA: ACM.

[33] Tevs, A.; Ihrke, I.; and Seidel, H.-P. 2008. Maximum mipmaps for fast, accurate, and

scalable dynamic height field rendering. InI3D ’08: Proceedings of the 2008 symposium

on Interactive 3D graphics and games, 183–190. New York, NY, USA: ACM.

[34] Tzeng, S., and Wei, L.-Y. 2008. Parallel white noise generation on a GPU via cryp-

tographic hash. InSI3D ’08: Proceedings of the 2008 symposium on Interactive 3D

graphics and games, 79–87. New York, NY, USA: ACM.

[35] Williams, L. 1978. Casting curved shadows on curved surfaces. InSIGGRAPH

’78: Proceedings of the 5th annual conference on Computer graphics and interactive

techniques, 270–274. New York, NY, USA: ACM.

[36] Woo, A.; Poulin, P.; and Fournier, A. 1990. A survey of shadow algorithms.IEEE

Comput. Graph. Appl.10(6):13–32.

[37] Wyman, C., and Hansen, C. 2003. Penumbra maps: approximate soft shadows in

real-time. InEGRW ’03: Proceedings of the 14th Eurographics workshop on Rendering,

202–207. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

[38] Wyman, C. 2005. Interactive image-space refraction ofnearby geometry. In

GRAPHITE ’05: Proceedings of the 3rd international conference on Computer graphics

and interactive techniques in Australasia and South East Asia, 205–211. New York, NY,

USA: ACM.




