

APPROVAL SHEET

Title of Thesis: Real-Time Multiple Refractions Through Deformable Objects

Name of Candidate: Pankaj Purushottam Chaudhari
M.S. in Computer Science, 2008

Thesis and Abstract Approved:
Dr. Marc Olano
Associate Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Pankaj Purushottam Chaudhari.

Permanent Address: 4709 Belwood Green, Baltimore, MD 21227.

Degree and date to be conferred: M.S. in Computer Science, August 2008.

Date of Birth: 08-23-1982.

Place of Birth: Jalgaon, India.

Secondary Education: Laxmanrao Apte Prashala Junior College, Pune, India.

Collegiate institutions attended:

University of Maryland Baltimore County, M.S Computer Science, 2008.
Pune Institute of Computer Technology, B.E. Computer Engineering, 2004.

Major: Computer Science.

Professional positions held:

Member of Technical Staff, Great Software Laboratory Pvt. Ltd., Pune, India.
(September 2005 – July 2006).
Assistant System Engineer (Trainee), Tata Consultancy Services Ltd., Mumbai, In-
dia. (August 2004 – August 2005).

ABSTRACT

Title of Thesis: Real-Time Multiple Refractions Through Deformable Objects

Pankaj Purushottam Chaudhari, M.S. in Computer Science, 2008

Thesis directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Refraction of light is one of the important phenomena that contribute to the perception

of realism and is responsible for widely observed effects such as caustics. We describe an

image-space algorithm to simulate refraction of light through a dynamic object. Unlike

previous approaches, our technique achieves refraction through multiple interfaces at in-

teractive frame-rates and does not require any pre-processing. Each stage of our algorithm

runs entirely on the GPU and fits into the existing raster-based pipeline. Multiple refrac-

tions are simulated using depth layers obtained from a dynamically voxelized polygonal

model and by using an image-space ray tracing technique. We also describe an accurate

surface interpolation technique used to obtain surface normals using the depth layers. Our

implementation suits the standard rasterization pipeline and achieves visually plausible re-

sults at interactive frame rates even for the dynamic scenes involving multiple refractive

objects.

Real-Time Multiple Refractions Through Deformable

Objects

by

Pankaj Purushottam Chaudhari

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
M.S. in Computer Science

2008

c© Copyright by

Pankaj Purushottam Chaudhari

2008

Dedicated to the inventors of Café Mocha.

ii

ACKNOWLEDGMENTS

I thank my advisor Dr. Marc Olano for his support and guidance throughout this

thesis work. I also want to thank my committee members for reviewing this document

and providing valuable feedback on the text. Thanks to my parents for their never-ending

endurance with me during the tough times.

I am pleased to thank all VANGOGH Lab members for their time and support. I am

grateful to my roommates for adjusting with my nocturnal schedule. My special thanks to

my friend Varsha Rao for untiringly reviewing many drafts of this document.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . xi

Chapter 1 INTRODUCTION . 1

Chapter 2 BACKGROUND AND RELATED WORK 5

2.1 Refraction and Caustics . 5

2.2 Ray Tracing And Photon Mapping . 6

2.3 Interactive refraction using Graphics Processing Units (GPUs) 8

2.3.1 GPU pipeline . 9

2.3.2 Image-space refraction . 11

2.4 Volumetric Caustics . 15

2.5 Voxelization using GPUs . 18

2.6 Other Related Work . 20

Chapter 3 APPROACH . 22

3.1 Discussion of Goals . 22

iv

3.2 Overview of Method . 23

3.3 Voxelization . 25

3.4 Peeling Depth Layers . 26

3.4.1 Peeling On-The-Fly . 27

3.4.2 Separate Peeling Pass . 28

3.5 Surface Interpolation using Perspective-Corrected Depth Gradients 29

3.6 Image Space Ray Tracing . 33

3.7 Restricting the binary search . 35

3.8 Light Attenuation . 38

Chapter 4 RESULTS . 39

4.1 Images and Discussion . 39

4.2 Performance . 47

4.3 Limitations . 51

Chapter 5 CONCLUSION . 53

REFERENCES . 55

v

LIST OF FIGURES

1.1 Left image shows real-life refraction caused by water and the right image

shows an example of refractive caustics produced by a drinking glass on a

table. 2

2.1 Illustration Snell’s law of refraction to model bending of light rays. 5

2.2 Illustration of how ray tracing works. A light ray from each pixel is inter-

sected with the objects in the scene. These rays can be reflected or refracted

recursively at each intersection. Here, the middle ray is refracted through

multiple interfaces. 7

2.3 Arvo (1986) introduced photon tracing approach to render caustics (a). A

glass of cognac rendered using photon mapping (b) from Jensen (1996). . . 8

2.4 On a GPU, an object is represented as a mesh of triangles. Each triangle has

three vertices and a vertex normal at each of them specifies the orientation

of a triangle. 9

2.5 Rendering pipeline in modern GPUs. Vertex, geometry and pixel stages

are programmable; however, Output Merger stage has a fixed functionality.

Output can be written to multiple render targets (MRTs). 10

2.6 Illustration of interaction of light rays with front and back faces of an ob-

ject. After rasterization, the information about point P1, normal ~n and

incident vector ~vi is available. However, depth testing discards any infor-

mation about exit point P2 and its corresponding normal. 11

vi

2.7 Wyman (2005) used a separate pass to obtain depth and normal maps of

the backmost surfaces (a) and (c). (b) and (d) are depth and normal maps

for front faces. In a pixel shader, these textures are used together to get the

final result (e). 13

2.8 Refraction and caustics produced by Wyman (left) and Shah (right). 14

2.9 Volumetric caustics produced by Ihrke et al. (2007) (left) and Sun et al.

(2008) (right). Both the methods achieve effects such as volumetric caus-

tics, absorption, scattering, etc. in real-time. 15

2.10 Spatially varying refractive indices and the octree (shown in 2D) used by

Sun et al. (2008). Value in the each cell of the octree indicates the step size

to be taken to advance photons in the region nearby. 17

2.11 Triangular Buddha model is voxelized by Varadhan et al. (2006). The

model is divided into a uniform grid of cuboids known as voxels. 18

2.12 Voxels grid encoding by Eiseman et al. (2006) 20

3.1 Illustration of voxelization of the bunny model into 16 slices. Peeling depth

layers simply involves finding the index of each set bit. A binary search can

be performed to find each set bit . 27

3.2 First eight layered depth images(LDI) peeled for the dragon model (871,391

triangles). It can be easily observed that our method preserves subtleties on

the surfaces. 28

vii

3.3 To calculate surface normal at any point, gradients in vertical and hori-

zontal directions are calculated. Since, the depth images provide reason-

ably accurate estimates of view-space depth; we can utilize them to find

the actual 3D coordinates of each point shown and then calculate accurate

bidirectional gradients. 31

3.4 Top row shows surface normals calculated using δ = 1 (left), δ = 2 (cen-

ter) and mesh normals using mesh normals of a 3x3 neighborhood (right).

Absolute deviation from the actual surface normals for these methods is

visualized in the bottom row. For δ = 2 errors are more prominent at the

silhouettes of the object. 32

3.5 Illustration of how binary search is performed with just two interfaces. A

ray starting from the point S is traced to find an intersection with the back-

most surface at point R3. All other faces that the ray ~v1 intersects are

ignored. As an example, a ray with two intersections and multiple intersec-

tions is also shown. 33

3.6 In our method, binary search is applied at each interface of the object. This

figure illustrates the binary search performed at the first back face of an

object. Only first 3 iterations (P1,P2 and P3) are shown for simplicity.

Region where the search is performed is also depicted. The search is re-

stricted by the maximum depth, Zmax of the current region. Once an

intersection point R3 is obtained, a normal is calculated at that point and

Snell’s law is applied to generate the ray ~v2 36

3.7 Illustration of parallel reduction on a 4x4 texture. 37

viii

4.1 Top row: Left image shows refraction just through the front and back in-

terfaces of the dragon model and the right image shows refraction through

multiple interfaces of the same model. Bottom Row: Left image shows re-

fraction through first 2 interfaces of a sunflower model and the right image

shows multiple refractions for the same. Refractive index of 1.25 was used

for both the models. 40

4.2 A vertex-displaced dynamic dragon model rendered using our method. . . . 41

4.3 Two Stanford bunny models rendered together in different views. This

complex scene can be easily rendered by our approach at an interactive

frame rate of 25 FPS. Top-left image with a single bunny is included for

the comparison. Refractive index used is 1.2. 42

4.4 Stanford bunny models rendered with an absorption coefficient of 4.0 (op-

tical path length scaled to simulate actual geometric distance) for red and

green color channels. Top row images are rendered with a refractive index

of 1.11. Bottom row bunny models have a refractive index of 1.15 and 1.25

(left to right). Absorption coefficient is exaggerated just to visualize its effect. 43

4.5 Caustics produced by a sphere rendered to indicate the correctness of our

photon tracing technique (left) and the same view is rendered using a re-

fractive dragon (right). 44

4.6 Various complex scenes rendered at interactive frame rates using our

method. As it can be seen, caustics can be easily rendered onto any sur-

rounding objects. Top row: two bunny models rendered in two different

views. Bottom row: a dragon model, an armadillo and a bunny casting

caustics on a diffuse dragon model. 46

ix

4.7 Errors due to incorrect normals interpolation for minute silhouettes. 47

4.8 The same performance data visualized as a graph. Non-linear relationship

between the number of triangles and frame rate clearly indicates that the

algorithm is not limited by the number of triangles in the scene. 50

x

LIST OF TABLES

4.1 This table contains performance statistics for various models. Voxelization

resolutions are also varied along with the number of depth layers utilized

to trace photons through the model. All numbers indicate frames rendered

per second on NVIDIA 8800 GTX with 768 MB of dedicated video memory. 48

4.2 Timings for each stage are measured at 256x256x256 and 512x512x256

voxelization resolution for low and high polygonal meshes in the scene

containing two bunny meshes. Scene I-A: Two bunnies, 288,092 triangles.

Scene I-B: Two bunnies, 30,000 triangles. Scene II-A: One bunny, 288,092

triangles. Scene II-B: One bunny, 30,000 triangles. All timings shown are

in milliseconds. 49

4.3 Summary of the properties of our method and their comparison with the

existing methods. 51

xi

Chapter 1

INTRODUCTION

From the time of early civilizations, philosophers and researchers alike have tried

to explain the intriguing properties of light. Ancient Greek and Indian thinkers included

light amongst the five fundamental elements which make matter. In conjunction, they also

believed that light was an atomic entity equivalent to energy. In modern physics, several

theories about the nature of light have been proposed. According to the well-known particle

theory, light is made up of tiny particles, called photons, which are emitted from a light

source. Photons are the carriers of electromagnetic waves of different wavelengths. They

possess zero mass and travel at extremely high velocity. Our brain perceives an image of

the world based on the properties of these photons. Our perception of the color of an object

is simply the brain’s interpretation of the density of photons of a particular wavelength,

traveling from an object, falling on our retina.

The propagation of light has been studied extensively and influence of the medium

of propagation on the properties of light had not escaped the focus of scientists. During

the time of the Scientific Revolution, the findings of several scholars have added to our

knowledge on the propagation of light. A classic example being the property of light to

disperse into its seven component colors discovered by Newton. According to the modern

particle theory, the photons that comprise light can undergo absorption, emission, reflec-

1

2

tion, or transmission when they collide with the objects in their path. This behavior of

photons is responsible for many optical phenomena such as shadows, reflection, refraction,

dispersion, caustics and fog. Computer graphics involves simulation of such behavior using

computers. In reality, the immense speed of photons generates optical effects in no time.

However, due to limited computational power, the problem of simulating complex optical

phenomena even for a simple object is still an interesting challenge to researchers.

Refraction of light is one of the important phenomena that greatly contribute to the

perception of realism. Refraction occurs whenever light enters a transparent medium where

its speed is different. This difference in speed causes bending of light rays as shown in

Figure 1.1. Curved transparent surfaces often cause bent light rays to converge on the

surrounding diffuse objects forming bright patterns of light known as caustics. Realism of

refraction can often be visualized using its caustics pattern. Figure 1.1 shows an example

of refractive caustics formed by a drinking glass onto a table. Caustics can also be formed

by the light rays reflected by curved specular surfaces.

FIG. 1.1. Left image shows real-life refraction caused by water and the right image shows
an example of refractive caustics produced by a drinking glass on a table.

Ray tracing can accurately simulate refraction. However, due to the recursive nature

3

of refraction, doing it in real-time still remains a challenge. High computational and stor-

age complexity of these problems often leads to approximation of realistic parts. Many

interactive applications require such realism to be produced in real time. A few examples

include 3D games, virtual reality applications, and 3D mesh modeling applications for the

artists requiring immediate visual feedback.

Researchers have come up with image-space approaches by exploiting the capabili-

ties of modern graphics hardware to approximate refraction through two surfaces (Wyman

2005a; Oliveira & Brauwers 2007). Refraction through multiple surfaces was previously

achieved using layered depth images on static models (Krüger, Bürger, & Westermann

2006). In addition, Eikonal rendering has been used to achieve the same in real-time but

by using volumetric representation of inhomogeneous static scenes (Ihrke et al. 2007). In

this thesis, we present an interactive framework to simulate transmission of photons, that is

refraction of light, through complex transparent objects with dynamically changing shapes.

Our work is inspired by the work of Oliveira et al. (2007) and Kruger et al. (2006).

Contrary to previous multiple surface refraction techniques (Ihrke et al. 2007), it requires

no preprocessing. Our technique employs surface voxelization of dynamic models to ob-

tain surface occupancy information in a uniform grid stored as a 2D texture. Using a

high-resolution volumetric representation allows us to obtain up to 32 depth layers of any

dynamic object represented as a polygonal mesh. Light rays are intersected against these

surfaces using a fast binary search algorithm. At each intersection found, we extract sur-

face information by interpolating the surface normal using the depth gradient from the

depth image generated using the voxel occupancy information. Since our method fits com-

pletely into the existing rasterization-based rendering pipeline, it can be combined with

image-space caustics visualization technique such as caustics mapping. Interactive perfor-

mance of our method to render dynamic objects makes it suitable for real-time applications

such as video games that require visual realism and involve animated or deforming models.

4

The main contributions of this thesis include:

• A real-time method to obtain up to 32 depth layers by voxelizing a dynamic object;

• A perspective-corrected depth gradient method to estimate surface normals using

these depth layers;

• An adaptive image-space binary search algorithm to incorporate refraction through

multiple layers.

Chapter 2

BACKGROUND AND RELATED WORK

In this section, we discuss related work in this field and also explain a few background

concepts needed to understand this thesis.

2.1 Refraction and Caustics

Surface Normal

ηi

ηr

θi

Light Ray

�

θr

Refractive Object

FIG. 2.1. Illustration Snell’s law of refraction to model bending of light rays.

Bending of light rays can be easily modeled by applying Snell’s law at each point

of refraction. Snell’s law defines the relationship between the angles of incidence and

5

6

refraction as follows:

ηi ∗ sin(θi) = ηr ∗ sin(θr),

Where,

ηi is the refractive index of the medium the light is leaving. The refractive index of a

medium is simply the ratio of the speed of light in a vacuum to the speed of light in that

medium,

ηr is the refractive index of the medium the light is entering,

θi is the incident angle, the angle made by the entering light ray, →vi, with the surface

normal,
→
n, at the point of refraction,

θr is the angle of refraction, the angle made by the leaving light ray, →vr, with the

surface normal,
→
n, at the point of refraction.

For a complex object in which a light ray gets refracted at multiple interfaces, Snell’s

law can be applied successively at each interface. Caustics are formed when these refracted

rays exit the object and hit the surrounding diffuse environment. Caustics are the bound-

aries where the intensity of light changes from zero to non-zero, that is, from shadow to

bright pattern of light. Increased intensity at a point occurs due to multiple photons hitting

it. Thus caustics can be easily modeled as an accumulation of intensity of the photons when

they hit the diffuse surrounding.

2.2 Ray Tracing And Photon Mapping

The most obvious way to propagate light rays through any scene is to use a conven-

tional ray tracing approach that involves following the path that light takes as it bounces

through an environment by subsequent recursive application of Snell’s law. As shown in

Figure 2.2, a light ray is shot for each pixel on the screen. This light ray is then intersected

with the objects in the scene and shading calculations are performed at the closest point of

7

FIG. 2.2. Illustration of how ray tracing works. A light ray from each pixel is intersected
with the objects in the scene. These rays can be reflected or refracted recursively at each
intersection. Here, the middle ray is refracted through multiple interfaces.

intersection. At each intersection point, light rays are reflected or refracted depending upon

the object’s optical properties. This approach is not suitable to render caustics, as light rays

must be cast from the light source instead of the eye. Ray tracing from the light source is

known as photon tracing.

The problem of rendering caustics is closely related to the problem of rendering re-

fraction. However, it requires storing the light energy, that is the luminosity, at each point

in three-dimensional space. Arvo (1986) introduced illumination maps to store light en-

ergy in a pre-processing step using photon tracing. During the rendering pass, ray tracing

from the eye was then used to illuminate the scene by utilizing these illumination maps in

a shader. Figure 2.3(a) shows one of the first synthetic images demonstrating caustics pro-

duced using this approach. Although ray tracing produces realistic results, it is not suitable

for real-time applications. In addition, performing independent operations at each pixel is

not suitable for the streaming architecture of modern graphics hardware.

8

(a) (b)

FIG. 2.3. Arvo (1986) introduced photon tracing approach to render caustics (a). A glass
of cognac rendered using photon mapping (b) from Jensen (1996).

Jensen (1996) introduced a two-pass method to accomplish global illumination using

photon maps (Figure 2.3(b)). Photon maps are generated by emitting photons from the

light sources and storing photon locations as they hit surfaces. Photon hits are stored in a

hierarchical tree structure to facilitate fast searching of the nearest photons hits to estimate

radiance of any point in the scene. Photon mapping can provide full but non-interactive

global illumination solution. There have been advances in parallelizing photon mapping

(Günther, Wald, & Slusallek 2004) onto a cluster of PCs to obtain interactive caustics;

however, using a cluster of PCs is not suitable for everyday real-time applications like

games.

2.3 Interactive refraction using Graphics Processing Units (GPUs)

Several approaches have been proposed to achieve simulation of refraction on GPUs.

This section will describe the rendering pipeline found in modern GPUs and previous ef-

forts applied to obtain interactive refraction and caustics.

9

Vertex

Vertex Normal

TriangleTriangle

FIG. 2.4. On a GPU, an object is represented as a mesh of triangles. Each triangle has
three vertices and a vertex normal at each of them specifies the orientation of a triangle.

2.3.1 GPU pipeline

On a GPU, an object is represented as a list of primitives, mainly points, lines or trian-

gles. More commonly, a triangular mesh (Figure 2.4) is utilized to describe the shape of an

object. A triangle is described by three points, known as vertices, and their normals, known

as per-vertex normals. Vertices are normally defined in the object’s own coordinate space

or object space. To render an object on a 2D screen, several transformations are required

to be performed on its vertices. In a typical scene, an object can be placed anywhere by

transforming these vertices from the object’s space to the world-space. These world coor-

dinates are then transformed to camera-space and then mapped to 2D screen pixels using

the camera’s projection parameters.

Currently available graphics processors provide parallel processing capability using

multiple stream processors that are capable of performing custom but uniform operations

on streamed data such as vertices, geometry and pixels. Separate custom operations, known

10

Vertex

Geometry

Texture

/Render

Target

Memory

CPU

Rasterizer

GPU

Pixel

Output Merger

Rasterizer

MRTs

FIG. 2.5. Rendering pipeline in modern GPUs. Vertex, geometry and pixel stages are
programmable; however, Output Merger stage has a fixed functionality. Output can be
written to multiple render targets (MRTs).

as shaders, can be written for vertices, geometry and pixels. Figure 2.5 shows important

stages in the GPU pipeline. Vertex shaders are generally responsible for transforming the

vertices of each primitive from object-space to screen-space and assigning per-vertex at-

tributes, such as color. Geometry shaders are executed per-primitive to emit or destroy

primitives. A primitive can be a point, a line or a triangle. Primitives are then rasterized by

a fixed function stage, known as a rasterizer. Rasterization of a 3D primitive involves map-

ping it onto a 2D screen by finding potential pixels, or fragments, that it occupies. A raster-

izer is also responsible for interpolating the surface normal for each pixel using the vertex

normals of a primitive. These potential pixels are then processed by pixel shaders running

in parallel to determine final color of a pixel. Output colors can be blended together using

a configurable stage called the output merger. In Direct3D, the output merger can be con-

figured for additive, subtractive or min-max blending. However, OpenGL provides many

other blending functions including logical operations. Output colors can be written directly

11

to the screen or to intermediate textures called render targets allowing for multiple-pass

lighting effects. Modern GPUs provide the capability to render to up to eight simultane-

ous render targets. More recently, the Compute Unified Device Architecture (CUDA) has

been introduced on specific graphics hardware to facilitate general purpose floating point

computations on the GPUs using a c-like language for parallel processing.

2.3.2 Image-space refraction

Surface Normal

Light rays

θi

θr

P1

P2

Back face

Diffuse Receiver

Refractive Object

ηi ηr Caustics

P2
Front face

FIG. 2.6. Illustration of interaction of light rays with front and back faces of an object. After
rasterization, the information about point P1, normal ~n and incident vector ~vi is available.
However, depth testing discards any information about exit point P2 and its corresponding
normal.

Several approaches have been proposed by researchers to approximate refraction and

caustics on a graphics processing unit (GPU). Focusing on real-time rendering, Wyman

12

(2005a) introduced an image-space method for approximating refraction through two in-

terfaces of static objects. The ray tracing algorithm described in the previous section finds

intersections of the light rays against the actual geometry of the objects. Such algorithms

are classified as object-space algorithms. However, image-space algorithms operate on 2D

images of an object rendered from a single point of view rather than on its actual geom-

etry. Thus, such algorithms are not limited by the number of vertices or polygons in the

scene. Rasterization is the stage which converts a geometry from the object-space to the

image-space. Images utilized by such algorithms generally store per-pixel depth or surface

normals. In an image-space approach, a fixed set of operations is performed for each pixel

of a 2D image. It is thus suitable to the streaming architecture of the current GPUs which

can perform per-pixel operations in parallel with great speeds. Since image-space algo-

rithms work only on the visible pixels of a scene, they are fast and inherently provide better

sampling. Furthermore, even for high resolution output images, per-pixel processing does

not become a bottleneck.

In the image-space, the following information is easily available for each pixel after

rasterization, (refer to Figure 2.6):

• incident light vector, →vi,

• point of refraction, P1,

• surface normal at the point of refraction,
→
n

Using this information, the refracted ray, →vr, can be easily computed using Snell’s law.

However, a pixel shader is not given any information about the point P2 from the backmost

interface and its surface normal. This problem is solved by using a separate rendering pass

to store depths and surface normals of the backmost faces in intermediate textures as shown

in Figure 2.7. The depth of the object along each vertex normal is pre-computed and then

13

used in a pixel shader to approximate the location of point P2. Since for deforming objects

depth along vertex normals constantly changes, this approach is not suitable to render them.

FIG. 2.7. Wyman (2005) used a separate pass to obtain depth and normal maps of the
backmost surfaces (a) and (c). (b) and (d) are depth and normal maps for front faces. In a
pixel shader, these textures are used together to get the final result (e).

Shah et al. (2007) adopted Wyman’s (2005a) method for refraction and introduced a

caustics mapping technique similar to shadow mapping. As in the case of backward ray

tracing, the refractive object is rendered from the light source point of view to obtain exiting

refracted rays or photons using Wyman’s approach. These photons are then intersected with

the surroundings in the pixel shader and corresponding 3D positions are stored in a texture.

Point primitives are then rendered by using this position map as a vertex buffer. Caustics

maps are created by splatting the point primitives and accumulating luminosity at each

pixel. In the final pass of rendering from the eye, caustics maps are used to fetch luminosity

information at each pixel. Wyman et al. (2006) observed that such an approach leads

to noisy and incoherent images, and they thus used a nearby neighbor photon gathering

algorithm in a 7x7 window along with Gaussian filtering. They also achieved coherency

by storing photons for three recent frames. Recently, Wyman (2008) further accelerated

the generation of the caustics map by eliminating unnecessary photons at the earliest point

using hierarchical caustics maps. Figure 2.8 shows caustics rendered using these methods.

14

FIG. 2.8. Refraction and caustics produced by Wyman (left) and Shah (right).

Recently, Oliveira et al. (2007) introduced an image-space ray tracing approach to

estimate the intersections of light rays with the backmost interface of deformable objects

without any pre-computations. Point P2 (Figure 2.6) where the ray exits the object is com-

puted by performing a binary search along the refracted ray →vr. The search is optimized by

restricting it by the bounds of the object in the viewing direction. This method can easily

be used along with any of the previously discussed methods to render caustics. All the

image-space techniques discussed so far are limited to modeling refractions only through

front and back interfaces of the objects. Another group of researchers has developed re-

fraction on complex geometry using spherical harmonics to store and retrieve ray-traced

refraction paths for each vertex and then interpolate the same for each fragment during fi-

nal rendering (Génevaux, Larue, & Dischler 2006). While this approach produces results

closer to realism, it is nevertheless, very memory and computationally intensive. It also

requires a long pre-computational step of generating and compressing spherical harmonics

coefficients. Furthermore, reduced sampling while compressing using spherical harmonics

introduces aliasing artifacts.

15

2.4 Volumetric Caustics

FIG. 2.9. Volumetric caustics produced by Ihrke et al. (2007) (left) and Sun et al. (2008)
(right). Both the methods achieve effects such as volumetric caustics, absorption, scatter-
ing, etc. in real-time.

All methods described in the previous section are based on applying Snell’s law of re-

fraction at each interfering interface. Alternatively, volumetric representation of an object

can be used for simulation of refraction. A high resolution volumetric data grid storing sur-

face normals at each grid location can provide accurate information about surface details.

However, it becomes highly memory inefficient to store normals for a large volume. Fur-

thermore, to obtain such volumetric information for a deforming object is computationally

expensive and thus not suitable for real-time rendering. Ihrke et al. (2007) take another ap-

proach and present a sophisticated method, Eikonal Rendering, to model refraction through

volumes using geometric optics. They employ a light propagation scheme derived from the

ray equation of geometric optics to estimate non-linear (curved) light paths through a vol-

ume with smoothly varying refractive indices. The following equation defines the path ~x

of a photon in a field n of inhomogeneous refractive indices (Ihrke et al. 2007) with an

infinitesimally small step size ds along the direction of light ray:

16

d

ds
(n

d~x

ds
) = ~∇n (2.1)

where, ~∇n is the gradient of refractive indices along the ray direction. Using ~w = nd~x
ds

,

the equation 2.1 can be rewritten as:

d~x

ds
=

~w

n
(2.2)

d~w

ds
= ~∇n (2.3)

Using Euler forward-difference discretization of these continuous equations, a photon

can be marched as follows:

~xi+1 = ~xi +
∆s

n
~wi (2.4)

~wi+1 = ~wi + ∆s~∇n (2.5)

where, ∆s is a discrete step size to advance photons along the curved path. Gradients

of refractive indices at each grid location of the volume are obtained as an offline pre-

processing step and stored in a 3D texture. In the rendering pass, photons are then traced

through this volume of gradients using a constant step size as described in the Equations

2.4 and 2.5. Figure 2.9 shows many volumetric effects such as refraction, caustics, multiple

scattering, attenuation and emission produced with this method in real-time. However, any

change to the geometry in the scene requires recalculation of the gradients of refractive

indices which takes several seconds and hence limits this approach only to static scenes.

Independently and concomitant with our work, Sun et al. (2008) conducted research

17

FIG. 2.10. Spatially varying refractive indices and the octree (shown in 2D) used by Sun et
al. (2008). Value in the each cell of the octree indicates the step size to be taken to advance
photons in the region nearby.

on overcoming such pre-computations by dynamically obtaining spatially varying refrac-

tive indices using voxelization of an object. They accomplished it by assuming that the

refractive index varies only near the surfaces and is constant inside the object (Figure

2.10). The refractive index for a voxel was derived from the density of the object in it.

Voxelization was performed by rasterizing the model giving only the refractive indices at

the surfaces. The same equations 2.4 and 2.5 as in Eikonal rendering are used for photon

tracing, however, with an adaptive step size. As shown in Figure 2.10, an octree storing the

minimum and maximum of the refractive indices at each cell is generated in a separate pass.

This octree is then utilized to vary the step size depending upon the gradient of refractive

indices. For example, a larger step size can be taken for the region inside the object, where

18

the refractive index is almost constant. As seen in Figure 2.9, effects similar to Eikonal

rendering can be produced. Although interactive, use of 3D textures limits this approach

by the amount of video memory available. Furthermore, CUDA is used for photon tracing

which restricts its use on specific graphics hardware.

It can easily be observed that if a scene consists of refractive objects with uniform

refractive indices, then non-linear viewing ray propagation is unnecessary and Snell’s law

can simply be applied at each interfering interface of the objects. With this observation, the

problem of multiple refractions simply reduces to performing linear ray tracing through the

scene and applying Snell’s law at all surfaces that come along the light path.

2.5 Voxelization using GPUs

Voxels are three dimensional entities representing volumetric information such as

density, color, surface normal or simply occupancy, that is in-out information indicating

whether some part of the object is inside a voxel or not. To voxelize a polygonal mesh, a

grid of cells is constructed around it. For each polygonal primitive, the cells that it inter-

sects are found. Figure 2.11 depicts a voxelized Buddha model.

FIG. 2.11. Triangular Buddha model is voxelized by Varadhan et al. (2006). The model is
divided into a uniform grid of cuboids known as voxels.

19

It is apparent that a technique is needed to obtain the volumetric representation of the

refractive object in a single rendering pass. While the exact surface information cannot be

obtained, volume occupancy information can easily be generated by real-time voxelization

of polygonal models using GPUs. Dong et al. (2004) showed a possibility of achieving

interactive voxelization for dynamic scenes. Eiseman et al. (2006) further accelerated

voxelization by utilizing the GPU’s blending functionality and stored surface occupancy

information to a 2D texture. They also demonstrated its use in generating transmittance

shadow maps and crude refraction in real-time. Crane et al. (2007) obtained an in-out

volumetric representation in a 3D texture using a stencil buffer for orthogonal voxelization.

This approach requires storing a vertex per grid cell, and hence becomes memory ineffi-

cient to generate large volumes. For lighting any refractive object, it is sufficient to know

only about surface occupancy, as the index of refraction remains constant inside the object

and scattering happens only at the interfering surfaces. With this observation, we employ

the technique by Eiseman et al. (Eisemann & Décoret 2006). Hardware voxelization is

accomplished using two important observations:

1. a rendered viewport implicitly defines a grid as shown in Figure 2.12, and

2. whenever the GPU renders an object, it traverses every primitive and it also finds

each cell intersected in this implicit grid.

At screen pixel (x, y), for every fragment generated, (x, y, fragment depth or z)

indicate a grid cell. Instead of discarding a fragment that is not visible, its information

needs to be encoded in the red, green, blue and alpha (RGBA) color channels of the render

target. Hence, for each grid cell intersected, its corresponding bit in the render target is set

to 1. Using logical OR or additive blending, such 1-bit information about every fragment at

each screen location is gathered. A texture with 32-bit precision can store up to 32 slices,

and higher resolution can easily be obtained by using multiple render targets.

20

FIG. 2.12. Voxels grid encoding by Eiseman et al. (2006)

2.6 Other Related Work

In another approach, Purcell et al. (2003) implemented photon mapping on pro-

grammable graphics hardware to show the capability of commodity hardware to fully sim-

ulate global illumination. Instead of using an irregular structure like a kd-tree, they used a

uniform grid structure which suitably maps onto GPUs. To accelerate searching of photons

during the rendering pass, photons were kept sorted using a bitonic-sort or a stencil-routing

method. Sorting on the GPU and photon searching involves many texture operations lim-

iting the performance. To further improve interactive performance, Kruger et al. (2006)

avoided any kind of intermediate radiance representation by using a screen-space photon

tracing method that exploits the GPU’s capability to render lines. They resolved intersec-

tions between objects and photon rays using layered depth maps and simple depth compar-

ison in fragment shaders. Energy transfer was then done by rendering oriented sprites at

each receiving point. Although this approach traces photons interactively, it requires mul-

tiple rendering of the scene to obtain layered depth images limiting its usability to simple

scenes. Whenever a scene is rendered with no culling, the GPU processes all primitives

that aren’t culled by view frustum culling. Thus, all the necessary information about mul-

21

tiple interfaces is generated in a single rendering pass. However, it cannot be stored since

Z-buffer or depth testing discards all the fragments that are not visible. Recently, Bavoil

et al. (2007) produced interesting multi-fragment effects, such as translucency, by storing

eight fragments per pixel in a K-buffer. Myers et al. (2007) extended this method to store

more than eight fragments per pixel using a stencil-routed A-buffer stored as a multi-sample

texture. These methods certainly avoid multiple renderings for complex scenes, however,

they cannot deal with stencil-buffer overflow and also require an expensive sorting to be

performed on all the fragments.

Chapter 3

APPROACH

3.1 Discussion of Goals

By reviewing previous work, we can conclude that the current refraction rendering

techniques are limited to simulating refraction by pre-computing volumetric data on static

objects (Ihrke et al. 2007) or to only two interfaces on dynamic objects (Oliveira & Brauw-

ers 2007). The dynamic refraction technique by Sun et al. (2008) works at interactive

frame rates, but only for simple scenes. This approach utilizes 3D textures and is limited

by the amount of video memory on current graphics hardware. Low resolution volumetric

data cannot deal with the subtleties on the surface of the object. All objects, refractive or

non-refractive, must be enclosed inside the 3D texture, and light distribution also has sig-

nificant storage requirements. Furthermore, it relies on CUDA for tracing photons through

the volume. Our goal is to present an approach that interactively renders multiple refrac-

tions, thus caustics, using a traditional polygon-based rasterizing pipeline. For simplicity

of implementation, we ignore phenomena such as scattering of light at each intersection.

In this thesis, we present a method that simulates only the photon paths through a volume.

Furthermore, we incorporate a computationally less-expensive technique, that is caustic

mapping, with multiple surface refraction which enables us, unlike previous techniques,

to render an object independently from its surroundings. This is a crucial requirement for

22

23

easy adoption of any technique into interactive applications such as games, as it provides

the flexibility of programming every object in the scene with different rendering techniques.

Overall, our goals can be summarized as follows:

• Combine the best of image-space refraction and volumetric refraction techniques to

achieve multiple refractions

– Obtain a volumetric representation that is in the image-space

– Use an interactive method to trace photons

• The method should fit into the existing rasterization-based pipeline

• Refractive objects must be rendered separately from the surrounding objects

• To be able to interactively visualize caustics, the method should work seamlessly

with the existing caustics mapping techniques.

3.2 Overview of Method

Our method uses a volumetric representation of an object that contains only its oc-

cupancy information. We choose such a representation because it requires only one bit

information per voxel grid. Unlike previous approaches using 3D texture, it enables us to

obtain a large number of object slices in less memory. Current graphics hardware limits

the size of 3D textures to 256× 256× 256 ≈ 64MB of memory for a single floating point

texture, requiring four bytes of memory per grid cell. Using just one bit per grid cell (one

byte = eight bits), the same resolution can be obtained in just 2MB of memory. In addition,

an entire scene at a higher resolution such as 1024× 1024 or at a high definition resolution,

such as 1920 × 1080, can be voxelized into 256 slices needing only 32MB and ≈ 64MB

of memory respectively. The current limit on the dimension of 2D texture is 4096× 4096.

24

Currently, GPUs support blending only for 32-bit color values which limits the number of

slices to 256 (32 × 8MRTs). However, with suitable hardware supporting 128-bit color

blending, the number can increase up to 1024 (128× 8MRTs).

Furthermore, previous approaches depend upon interpolating the orientation of a sur-

face by using a 3 × 3 × 3 or 4 × 4 × 4 neighborhood around the points where the light

hits. Such techniques can generate a discrete set of surface normals. We, however, in-

terpolate surface normals by using the depth images obtained from the volumetric data.

Depth images allow for smoother interpolation of surface orientation. Additionally, the

depth images that we obtain are already sorted in the viewing direction avoiding expen-

sive sorting operations like those discussed in other works on GPU (Bavoil et al. 2007;

Myers & Bavoil 2007). By using a high resolution for slicing, we ensure that the chance of

overflow in the additive blending is greatly reduced. Features less than the size of one voxel

would cause overflow and in such cases the location of the feature would be shifted by one

voxel. Since we store depth images in different color channels of floating point textures, we

can leverage the GPU’s filtering capabilities to obtain even smoother depth values. Subse-

quently, by employing an image space ray tracing algorithm (Oliveira & Brauwers 2007),

we find the intersections between these depth images and propagate light rays inside the ob-

ject. We operate on 2D depth images of an object; hence, our algorithm inherits all the ad-

vantages of operating in the image-space. Additionally, as opposed to the approach by Sun

et al. (2008) our method renders subtleties at least for front and back faces. Finally, using

the existent caustics mapping techniques, we intersect light rays exiting from the back faces

with the nearby diffuse objects to splat energy on them to produce caustics (Wyman 2008;

Shah, Konttinen, & Pattanaik 2007).

25

3.3 Voxelization

We employ a surface voxelization algorithm (Eisemann & Décoret 2006) to obtain

a volumetric representation of the object. To obtain a tightly bound voxel grid, we need

the bounds of the object in each direction. Determining such bounds in real-time for a

deforming mesh is computationally expensive; hence, we utilize per-pixel local bounds.

As a first rendering pass, we rasterize the mesh without any culling or hidden surface

removal and store minimum (Zmin) and maximum (Zmax) depth recorded for each pixel.

This is accomplished in a single pass by writing the actual depth d and the reverse depth

(Zfar− d) to R and G channels of a texture and accumulating the result using GPU’s max

blend operation. In the next rendering pass, for each fragment generated, its corresponding

local bounds (Zmin) and (Zmax) are then utilized to find its grid location. Although this

technique generates a distorted grid, for most pixels it provides more compact slicing than

uniform voxelization.

Similar to previous voxelization algorithms, we exploit the GPU’s blending capability

to obtain volume occupancy data in 256 slices using eight 32-bit textures as render targets.

These 32-bit textures are then converted to two 128-bit unsigned integer textures. Using

unsigned integer textures instead of unsigned normalized float avoids the extra computa-

tions needed each time during the conversion of normalized float into unsigned integer.

Information about each occupied grid cell is encoded in these textures using GPU’s blend-

ing capability. Since current Direct3D version does not support logical OR blending, we

employ additive blending. Additive blending has a problem of overflowing when the two

fragments intersect with the same cell; however, the occurrence of such scenarios with our

algorithm is rare since we use a high resolution grid. Currently available GPUs do not

support 128-bit unsigned integer blending. Thus, the voxelization resolution is limited to

only 256 bits. However, with the development of more advanced hardware which supports

26

128-bit blending, we would be able to support voxelization of an object into 1024 slices to

provide more accurate volumetric data and thus better rendering quality.

Despite its limitation, the GPU’s blending capability enables us to obtain the required

volume occupancy to peel up to 32 depth layers (Figure 3.2) and estimate surface normals at

each occupied grid cell. We have observed that for voxelization at the desired output level,

depth gradient of the nearby fragments is lost in the case of smoothly varying surfaces or

surfaces with small curvature where multiple neighbors fall in the same slice. This is more

applicable at high resolutions since the accuracy in depth cannot be increased accordingly

because of the limit on the number of slices. Thus, with only 256 slices, it is desirable to

voxelize any mesh into 256x256x256 or 512x512x256 grids.

3.4 Peeling Depth Layers

Current image space refraction algorithms are limited to refraction through only two

interfaces. To obtain refraction through multiple interfaces, a depth-peeling technique can

be utilized. Depth peeling can be described as peeling out layers of an object to uncover

its internal details. It involves capturing multiple layers of fragments which are generated

while rendering a geometry. Traditional depth peeling (Everitt 2001) captures one layer of

fragment at each rendering pass by excluding previously captured layers. This is accom-

plished by recording per-pixel depth for each layer and then utilizing it in the next pass

to reject fragments that are already drawn. However, this technique requires multiple ren-

derings of the mesh which creates a bottleneck while dealing with complex objects. We

have overcome this problem by peeling depth layers from the volumetric data obtained by

voxelization (Figure 3.1). For ray tracing, as described in (Oliveira & Brauwers 2007),

we need to compare the depth of a ray with a depth value from the image to determine

whether the ray exits the object at that pixel. We identify the following two techniques to

27

accomplish depth layer peeling to obtain depth of a layer at each pixel. Figure 3.1 shows

how layers are encoded in texels or texture pixels. For simplicity we show only 16 slices

instead of 256.

FIG. 3.1. Illustration of voxelization of the bunny model into 16 slices. Peeling depth layers
simply involves finding the index of each set bit. A binary search can be performed to find
each set bit

3.4.1 Peeling On-The-Fly

In this approach, we can begin ray tracing immediately after the voxelization step. To

achieve this, we need to know the index of the depth layer that we are intersecting our light

rays with. This problem is similar to finding the index b of the nth set bit in a 256-bit word

as shown in figure 3.1. To accelerate this bitwise search we utilize lookup tables to store

pre-computed answers for 8-bit values. Once we have index b of the layer n, we compute

its depth as follows:

28

depth = Zmin + (b/255) ∗ (Zmax− Zmin)

Where, Zmin and Zmax are either local bounds for a pixel or global bounds for the entire

object.

We have observed that performing bitwise search on-the-fly for a pixel involves doing

the same computations over and over again when multiple light rays are to be tested against

it. This severely reduces the performance, as it contains several branching instructions and

therefore becomes a hindrance in exploiting GPU’s parallelism. We keep a separate pass to

obtain depth layers as described below.

3.4.2 Separate Peeling Pass

FIG. 3.2. First eight layered depth images(LDI) peeled for the dragon model (871,391
triangles). It can be easily observed that our method preserves subtleties on the surfaces.

29

By using a separate pass that involves only bitwise operations described above for

each pixel and which stores the result in multiple render target textures would definitely

avoid the problems associated with on-the-fly peeling. However, current graphics hard-

ware allow only 8 simultaneous render targets, and in effect only 8 depth images. We

overcome this problem by treating individual color channel of these render targets as sep-

arate depth images. This allows us to generate 32 depth images in a single pass. Another

advantage of using this method, besides performance gain, is that hardware filtering can be

easily applied while sampling these textures, thereby eliminating the need for filtering in

a fragment shader and in turn preventing redundant texture accesses. To further accelerate

this pass, we employ a binary search algorithm to find each set bit in 256-bit word. Such

binary search would get more expensive than linear search when an object has more than

32 layers; however, we can ignore such rare cases since we can only peel up to a maximum

of 32 layers. Thus, our choice of binary search is justified in almost all scenarios. Figure

3.2 shows first eight depth layers obtained for the dragon model with 871,391 primitives.

Such an array of depth images is known as layered depth images or LDI array.

3.5 Surface Interpolation using Perspective-Corrected Depth Gradients

Whenever a light ray hits a surface, the path it will take is dependent upon the orien-

tation or normal of the surface at the point of intersection. As discussed in the previous

sections, we lose the information about the surfaces that are not visible in a particular view.

We use depth images obtained in the previous pass to find surface normals at any required

point. Several image-based rendering techniques frequently use the depth gradient method

to calculate a normal as follows (Khan et al. 2006):

∇d(i, j) = (d(i + 1, j)− d(i, j), d(i, j + 1)− d(i, j))

30

gx = [1, 0,∇xd]T

gy = [0, 1,∇yd]T

n = gx × gy (3.1)

where,

d(i, j) represents depth at pixel (i, j) and n is the normal at that pixel. This is a crude

approximation that leads to severe artifacts.

These artifacts are caused mainly due to two factors. First, the depth gradient is not

scaled to the perspective of the view. Second, it is a forward difference technique which

leads to non-smooth interpolation. We can avoid such artifacts by using a central difference

method, but it does not solve the problem with the perspective view. This method assumes

a unit change in both x and y directions between two adjacent pixels. However, in a per-

spective view this assumption is not valid. We eliminate this problem by calculating depth

gradient around a pixel in view-space and then calculating normals for them as follows

(Figure 3.3):

For each pixel (i, j) we have a reasonably accurate estimate of view-space depth

d(i, j) of the corresponding point from the eye. Let the perspective projection matrix used

for rendering be Mp. Assuming some arbitrary perspective depth ε, we can project clip-

space point p
′
(i, j)(2 ∗ (i/width) − 1, 1 − 2 ∗ (j/height), ε) to view-space point p(i, j)

as:

p
′
(i, j) = p

′
(i, j)×M−1

p

p(i, j) =
d(i, j)

p′(i, j)z

∗ p
′
(i, j)

This gives us the exact 3D coordinates of pixel (i, j). Similarly, we can calculate

31

FIG. 3.3. To calculate surface normal at any point, gradients in vertical and horizontal
directions are calculated. Since, the depth images provide reasonably accurate estimates
of view-space depth; we can utilize them to find the actual 3D coordinates of each point
shown and then calculate accurate bidirectional gradients.

p(i + δ, j),p(i − δ, j),p(i, j + δ) and p(i, j − δ). We can rewrite the equation 3.1 using

bidirectional gradients and perspective correction as follows:

∇xd(i, j) =
d(i + δ, j)− d(i− δ, j)

p(i + δ, j)x − p(i− δ, j)x

∇yd(i, j) =
d(i, j + δ)− d(i, j − δ)

p(i, j + δ)y − p(i, j − δ)y

gx = [1, 0,∇xd(i, j)]T

gy = [0, 1,∇yd(i, j)]T

n = gx × gy (3.2)

where,∇xd(i, j) and∇yd(i, j) are perspective corrected depth gradients in horizontal

32

δ=1 δ=2 3x3 neighborhood

FIG. 3.4. Top row shows surface normals calculated using δ = 1 (left), δ = 2 (center) and
mesh normals using mesh normals of a 3x3 neighborhood (right). Absolute deviation from
the actual surface normals for these methods is visualized in the bottom row. For δ = 2
errors are more prominent at the silhouettes of the object.

33

and vertical directions respectively, and δ is the integer step size in the horizontal or vertical

direction.

Figure 3.4 shows the visualization of errors for the normals calculated using our

method with δ = 1, δ = 2, and using the normals from a 3x3 mesh of vertices formed

around each pixel. It can be observed that with δ = 2, errors are smoother than with δ = 1

and there is no considerable difference in the accuracy when compared to 3x3 neighbor-

hood technique. Our method requires only 4 texture accesses, making it more efficient than

3x3 neighborhood which requires 9 texture accesses.

3.6 Image Space Ray Tracing

�1
��

P1
P3

P2

�
�

�2
��

S

R2

Z-dir
��	
�� 1� 3� 2�

E

R1
R3

�
�

Missed

Refractive Object

Camera

S

Multiple Refraction

FIG. 3.5. Illustration of how binary search is performed with just two interfaces. A ray
starting from the point S is traced to find an intersection with the backmost surface at point
R3. All other faces that the ray ~v1 intersects are ignored. As an example, a ray with two
intersections and multiple intersections is also shown.

34

We adopt the image-space binary search method proposed by Oliveira et al. (2007)

to calculate intersection of the refracted rays with the depth maps. In any image-space

approach, an object surface is usually represented by its depth map and its surface normals.

Light rays generated are intersected against these depth maps. Figure 3.5 illustrates how

binary search is performed against a depth map to estimate the intersection of refracted ray

~v1 with the back face. The search is restricted up to the point E with z = Zmax, where

Zmax is the maximum depth of the object. The coordinates of E are given by

E = S + (
Zmax − Sz

(~v1)z

)~v1

For any point P (Px, Py, Pz, 1) in view-space along the ray ~v1, its perspective projec-

tion is given by P̃ (P̃x, P̃y, P̃z, P̃w) = MpP , where Mp is the camera’s projection matrix.

Furthermore, its corresponding texture coordinates tP are given by

tP = ((
P̃x

P̃w

) ∗ 0.5 + 0.5, 0.5− (
P̃y

P̃w

) ∗ 0.5)

Using tP , actual depth dtP of the surface can be fetched from the depth map. A simple

comparison between Pz and dtP leads to following cases:

• Pz = dtP : Point P falls on the surface

• Pz > dtP : Point P is outside the object

• Pz < dtP : Point P is inside the object

To converge P to the point of intersection, a binary search is performed along the ray

starting from S and ending at E to obtain points P1, P2, P3 and so on. A large number

of iterations are required to reach the correct point of intersection. However, Oliveira et al.

(2007) observed that in most of the cases, 5 such iterations provide a reasonably accurate

35

estimation of the intersection point. Figure 3.5 illustrates 3 such iterations to obtain points

P1, P2, P3 and their corresponding intersection points R1, R2 and R3. Surface normal

of the point R3 is then calculated using the texture coordinate tP3 of the point P3 and

employing the perspective-corrected depth gradient method as described in the previous

section. Refracted ray ~v2 is then generated by applying Snell’s law.

To simulate refraction through multiple interfaces, the above discussed binary search

can be applied at each interface recursively before a light ray leaves the refractive medium

as depicted in Figure 3.6. For the first refracted ray ~v1 entered through point S, its cor-

responding intersection point with the first back facing interface (R3), can be found by

performing the above discussed binary search on the first depth layer from the LDI array

obtained in the peeling pass. Refracted ray ~v2 is then obtained using an interpolated normal

at R3. In the next pass, this refracted ray ~v2 and point R3 become the incoming ray ~v1 and

its starting point S. The search is again performed on the next depth layer from the LDI

array. This process is repeated until ~v2 exits the object.

3.7 Restricting the binary search

At each interface, we utilize 5 iterations of binary search to find an intersection point.

To converge to a correct intersection point in minimum number of iterations, each search

must be restricted by a tighter Zmax value. For each depth image in the LDI array, Zmax

represents the maximum depth for any pixel in it. Oliveira et al. (2007) obtain this value by

performing a parallel reduction on a depth texture. A parallel reduction involves reducing

a texture to half size by applying a reduction operation, in this case a maximum or max

operation, on 4 adjacent pixels. Figure 3.7 explains parallel reduction on a 4 × 4 texture.

To perform parallel reduction on 32 high resolution depth textures becomes extremely ex-

pensive. Hence, we utilize MIP levels at the resolution of 256 × 256 of these textures for

36

�2
��

�1
��

P1 P3
P2

�
�

S

Z-dir

E

R3

��	

�
�

Camera

P1

P3
P2

S

Z-dir

E

R3
�2
��

�1
��

Z-dir ���	

���	

P1

P3
P2

S

E

R3

�1
��

�2
��

���	

FIG. 3.6. In our method, binary search is applied at each interface of the object. This
figure illustrates the binary search performed at the first back face of an object. Only first 3
iterations (P1,P2 and P3) are shown for simplicity. Region where the search is performed
is also depicted. The search is restricted by the maximum depth, Zmax of the current
region. Once an intersection point R3 is obtained, a normal is calculated at that point and
Snell’s law is applied to generate the ray ~v2

37

the reduction operation. A MIP is an image pyramid which contains versions of a texture

that are at multiple lower resolutions. Using a low-resolution MIP level doesn’t guarantee a

correct maximum depth value of a texture; however, it provides a sufficient approximation.

To reduce the error introduced due to this approximation, a small constant value can be

added to the maximum depth obtained.

3 2

0 1

1 7

4 4 3 7

max (3,2,1,0)

1x1

0 1

2 3

1 5

4 4

6 9

3 8

3 7

5 9

9

4x4

2x2

max = max =

FIG. 3.7. Illustration of parallel reduction on a 4x4 texture.

It is also necessary to terminate the recursive binary search as soon as a photon hits

the backmost face. We achieve this by utilizing a depth texture of the backmost interface

that was obtained in the voxelization stage. If the depth of an intersection point approaches

the corresponding depth on the backmost face within a threshold, the photon is marked as

dead. Hence, for most photons, the search terminated after just a single iteration. Only the

photons that travel through the region with a high depth-complexity are traced further.

38

3.8 Light Attenuation

Since our method can provide a good approximation for the distance travelled by a

photon, light absorption can be easily simulated for a homogeneous object. Intensity I of

an outgoing photon can be described by the Lambert’s law of absorption as:

I = I0 ∗ e−αx

where,

I0 is the intensity of the photon before entering the object,

α is the absorption coefficient of the material of the object, and

x is the optical path length of the photon.

Optical path length x for a homogeneous medium can be calculated as:

x = l ∗ η

where,

l is the geometric distance travelled by the photon

η is the refractive index of the medium.

Light attenuation depends on the absorption as well as the scattering phenomena.

Since, we assume the object to be homogeneous, scattering would occur only at the points

where a photon hits the surface and not inside its volume. However, we do not store every

point where a photon hits and thus cannot compute scattering due to photon hits. We use

only absorption to approximate total attenuation.

Chapter 4

RESULTS

This chapter gives an in-depth analysis of our method, highlighting its important prop-

erties and also deals with the tangible limitations of this method. Our method simulates

multiple refractions through a dynamic object in real-time. Here, we have analyzed the

images created using our method. We also compare them with the images generated using

only two-face refraction. We have also discussed the performance of our method depending

on the complexity of the scene, voxelization resolution and different surface interpolation

techniques.

4.1 Images and Discussion

All results discussed in this section are rendered with a viewport of 512×512, on a dual

core AMD Athlon (2.6 GHz) processor equipped with NVIDIA 8800 GTX with 768MB

of dedicated video memory. The system was implemented using Direct3D 10 APIs. All

objects are dynamically voxelized into 512× 512× 256 grid. As discussed in the previous

section, binary search utilizes 5 iterations and is restricted by the bound computed by per-

forming parallel reduction on 256 × 256 MIP levels. Furthermore, perspective-corrected

central difference method is used for surface normal interpolation. Since we do not handle

refraction of nearby geometry, refracted rays are looked up in an environment map. Refrac-

39

40

tion of nearby geometry can be approximated using the technique discussed in (2005b).

Our renderer achieves interactive frame rates ranging from 25 FPS to above 100 FPS

depending upon the geometry and voxelization resolution. Unlike previous multiple refrac-

tion techniques, we can handle complex scenes with multiple refractive objects.

FIG. 4.1. Top row: Left image shows refraction just through the front and back interfaces
of the dragon model and the right image shows refraction through multiple interfaces of
the same model. Bottom Row: Left image shows refraction through first 2 interfaces of a
sunflower model and the right image shows multiple refractions for the same. Refractive
index of 1.25 was used for both the models.

Figure 4.1 shows the difference between multiple refraction and only two face refrac-

tion for the dragon model. A close observation of these pictures confirms that our method

successfully traces light ray through multiple interfaces. For the sunflower model, we show

41

refraction through first two layers instead of front and back interfaces for the comparison.

Interestingly, early photon termination can be easily observed at the regions with less depth

complexity, that is the regions where light rays intersect with less number of interfaces

before leaving the object.

FIG. 4.2. A vertex-displaced dynamic dragon model rendered using our method.

Figure 4.2 shows a deforming model rendered using our approach. To deform the

model, we displace its vertices in a vertex shader. This displacement is performed for each

rendering pass that needs to rasterize the model. For a model with a large number of vertices

such vertex transformations may take several computing cycles. Direct3D 10 provides a

way to save these transformed vertices in a separate memory buffer by using geometry

42

shader’s stream-out functionality. However, since we focus on simply demonstrating the

applicability of our approach to dynamic model, we do not implement such stream-out

feature.

FIG. 4.3. Two Stanford bunny models rendered together in different views. This complex
scene can be easily rendered by our approach at an interactive frame rate of 25 FPS. Top-
left image with a single bunny is included for the comparison. Refractive index used is
1.2.

Our renderer can render multiple refractive objects that can fit into a particular view.

We show that by rendering two Stanford bunny models together (Fig. 4.3). Since we

voxelize our scene dynamically, such complex scenes can be rendered at interactive frame

rates without any changes to our rendering pipeline. Multiple refractions through both the

43

bunny models are shown from different view angles.

FIG. 4.4. Stanford bunny models rendered with an absorption coefficient of 4.0 (optical
path length scaled to simulate actual geometric distance) for red and green color channels.
Top row images are rendered with a refractive index of 1.11. Bottom row bunny models
have a refractive index of 1.15 and 1.25 (left to right). Absorption coefficient is exaggerated
just to visualize its effect.

Absorption can be seamlessly incorporated in our technique provided all the objects in

the scene have the same optical properties like refractive index and absorption coefficient.

All the occupied grids are assumed to be having uniform optical properties throughout.

Figure 4.4 shows the final images rendered with a coefficient of absorption of 4.0 (not

physical) and with different refractive indices. Since we use just a single bit per grid cell,

empty or occupied, it is not possible to distinguish between two different objects in a scene.

44

Notice that, it will be possible to differentiate between the objects using multiple bits per

grid cell, e.g. 2 bits can be used to differentiate between 3 objects by using 00 to indicate

emptiness and 01,10,11 to indicate 3 different objects or 3 different materials. However,

this would increase the memory needs of the algorithm. As a demonstration, we rendered

the same scene of two bunny models by varying their absorption coefficient. For the images

generated, absorption only for red and green colors is used.

FIG. 4.5. Caustics produced by a sphere rendered to indicate the correctness of our photon
tracing technique (left) and the same view is rendered using a refractive dragon (right).

Since our method operates independently of the surrounding objects, caustics mapping

can be easily used along with it. However, caustics mapping has an inherent shortcoming

that the refractive object needs to be rendered from the point of view of the light using a

large view frustum. While rendering the actual scene if any point in the scene does not

map to a corresponding point in the light-space, discontinuities in caustics can be easily

seen, especially at the boundaries of the caustics map texture. We thus use a method by

Kruger et al. (2006) which traces the photons in the eye-space. The method uses line

45

primitives that are indicative of the photons’ starting positions and their directions. These

primitives are generated in a geometry shader and the GPU rasterizes these line primitives

extremely fast. All the intersections with the depth image of the surroundings are resolved

in a fragment shader operating on each pixel of these lines. Kruger et al. used point sprites

to splat energy, we, however, employ the image-space photon gathering method suggested

by Wyman et al. (2006) for its simplicity. Figure 4.5 shows the caustics produced by a

sphere on a bumpy floor. The purpose of this image is to indicate the correctness of our

photon tracing method.

More results on caustics are shown in Fig. 4.6. For all caustics, photons were traced

using our multiple surface refraction technique. Since multiple refractions would be ex-

pensive, we use single surface refraction for the final rendering pass and use the photons

generated previously using multiple refractions to map onto the scene. We did not make any

attempt to filter out noise from the caustics. Eliminating noise from the caustics is a well

studied problem and for real-time methods, one can refer to (Wyman & Davis 2006). Some

of the noise can also be attributed to the surface normal interpolation errors as described

further in this chapter.

Surface normal interpolation using depth gradients is always associated with the errors

in the interpolation of the normals at the silhouettes. Such errors become prominent when

normals are interpolated on the peeled depth layers since the discontinuities increase in the

regions where the photons are traced. Furthermore, errors due to discretization during vox-

elization also worsen these errors. This is illustrated in Fig. 4.7 which shows an enlarged

view of the region near feet of the dragon model and also surface normals interpolated for

one of the internal layers for the same region. Such inaccuracy can be avoided by utilizing

an approach similar to the variable size central difference operator method (Shin 1999) or a

context-sensitive surface interpolation (Shin & Shin 1995) which take local characteristics

of the surface into consideration. Using voxelization at higher resolution may also solve

46

FIG. 4.6. Various complex scenes rendered at interactive frame rates using our method. As
it can be seen, caustics can be easily rendered onto any surrounding objects. Top row: two
bunny models rendered in two different views. Bottom row: a dragon model, an armadillo
and a bunny casting caustics on a diffuse dragon model.

47

FIG. 4.7. Errors due to incorrect normals interpolation for minute silhouettes.

this problem, but it also requires increase in the number of slices. Current hardware limits

2D textures to 4096× 4096 size; however, as the resolution increases, the number of slices

should also be increased accordingly.

4.2 Performance

To measure performance of our system, we have used several standard meshes. How-

ever, we also generated corresponding low polygonal meshes to compare their performance

against the original high polygonal versions. Performance statistics for two different vox-

elization resolutions are shown in Table 4.2; which indicate that we achieve targeted per-

48

MODEL TRIANGLES 32 LAYERS 16 LAYERS

256X256 512X512 256X256 512X512
Holes 4,000 23 16 67 30
Dwarf 5,270 54 42 80 74
Bunny-lowpoly 15,000 106 57 114 71
Sunflower 18,094 54 43 88 80
Armadillo-lowpoly 30,000 59 37 95 58
Bunny and Bunny 30,000 48 25 90 41
Dragon-lowpoly 39,741 34 23 71 43
Armadillo and bunny 45,000 54 38 89 56
Ganesh 51,624 43 28 82 51
Buddha 67,234 53 28 83 52
Bunny I 69,451 87 36 99 60
Maxplanck 98,260 66 39 112 65
Bunny II 144,000 54 30 88 62
Igea 268,686 53 31 77 47
Armadillo 345,944 43 28 56 41
Dragon 871,391 31 21 43 29

Table 4.1. This table contains performance statistics for various models. Voxelization
resolutions are also varied along with the number of depth layers utilized to trace photons
through the model. All numbers indicate frames rendered per second on NVIDIA 8800
GTX with 768 MB of dedicated video memory.

formance. At both, 256x256 and 512x512 resolutions, the number of depth layers used

for light propagation are also varied. All images are generated using a photon buffer of

512x512 size. We observed that the performance is mainly dependent on the depth com-

plexity of a model and not the number of polygons in it. Since the depth complexity is

view-dependent, we report the frame rates for the view comprising of the highest depth

complexity possible for each scene.

For a 512x512 resolution texture, parallel reduction on 32 textures becomes a bottle-

neck. As we discussed previously, we leverage hardware’s capability to generate a MIP

level with the resolution of 256x256. We then perform parallel reduction on these 256x256

49

Stage 256X256X256 512X512X256
I-A I-B II-A II-B I-A I-B II-A II-B

Min-Max Depths 2.085 0.365 2.086 0.369 2.101 0.428 2.112 0.404
Voxelization 2.235 0.652 2.176 0.622 3.807 1.358 3.076 1.312
Depth Layer Peeling 1.032 1.044 0.918 0.907 2.968 2.955 2.705 2.698
Parallel Reduction 0.573 0.58 0.574 0.564 1.294 1.266 1.323 1.306
Photon Generation 2.403 0.608 2.411 0.613 2.428 0.617 2.431 0.641
Photon Tracing 4.938 4.889 3.22 2.99 8.665 7.774 5.691 4.981

Table 4.2. Timings for each stage are measured at 256x256x256 and 512x512x256 vox-
elization resolution for low and high polygonal meshes in the scene containing two bunny
meshes. Scene I-A: Two bunnies, 288,092 triangles. Scene I-B: Two bunnies, 30,000 trian-
gles. Scene II-A: One bunny, 288,092 triangles. Scene II-B: One bunny, 30,000 triangles.
All timings shown are in milliseconds.

textures to obtain depth bounds to restrict the binary search. We compared the performance

of tightly restricted binary search using 5 iterations with a loosely restricted binary search

using increased number of iterations for similar output. We could not see a performance

gain by avoiding parallel reduction and increasing the number of iterations. Thus, the

choice of performing parallel reduction is well justified. All frame rates and timings shown

in this section are measured with the inclusion of parallel reduction stage.

Table 4.2 compares actual time taken by each pass of our algorithm to render two

sets of a couple of scenes with 256x256x256 and 512x512x256 voxelization. It can be

observed that, at a specific resolution, time taken by Depth Layer Peeling and Parallel

Reduction remains fairly constant for a particular scene and it does not depend on the

number of triangles in the scene. To compare the performance of parallel reduction at

different resolutions, we have deliberately performed the reduction on 512x512 textures.

Although not on the number of triangles, the time taken by Photon Tracing is dependent on

the depth complexity of the scene. It can be observed that the time taken to trace photons

for a single bunny scene is less than that for the scene with two bunny models. Photons are

50

60

80

100

120

F
P

S
Performance Graph

0

20

40

Triangles

256x256x256, 32 layers 512x512x256, 32 layers 256x256x256, 16 layers 512x512x256, 16 layers

FIG. 4.8. The same performance data visualized as a graph. Non-linear relationship be-
tween the number of triangles and frame rate clearly indicates that the algorithm is not
limited by the number of triangles in the scene.

traced through 32 depth layers by rendering a full screen Quad or a rectangle 32 times. At

each rendering pass, we write all intersecting photons, dead or alive, to an output texture.

Using a separate texture to write out dead photons would surely improve the performance

of photon tracing stage.

The current implementation generates photons by rasterizing the geometry one more

time. However, for a high polygonal model, this photon generation pass may become a

bottleneck in the entire pipeline, referring to Table 4.2. More performance gain can be

attained by using a normal mapped low polygonal proxy model. Normal mapping would

51

Factors Wyman
(2005)

Oliveira et
al. (2007)

Ihrke et al.
(2007)

Sun et al.
(2008)

Our
method

Refractions Two faces Two faces Multiple Multiple Multiple
Surface details Preserved Preserved Lost Lost Preserved
Interactivity Very high Very high Low Low Medium
Storage requirement Very low Very low High Very high Low
Separated from the sur-
rounding

Yes Yes No No Yes

Multiple objects No No No No Yes
Fits into raster-based
pipeline

Yes Yes Yes No Yes

Pre-computations Yes No Yes No No
Caustics Mapped Mapped Inherent Inherent Mapped
Light attenuation No No Yes Yes Yes

Table 4.3. Summary of the properties of our method and their comparison with the
existing methods.

ensure that subtleties on the surface are preserved even for the surface represented by less

number of polygons. Additionally, as mentioned earlier, we do not exploit the stream-out

feature of the geometry shader stage which may save redundant processing of vertices and

provide further performance gain.

Finally, the properties of our method are summarized and compared with the existing

methods in Table 4.3.

4.3 Limitations

Although our method simulates refraction plausibly, there are two main limitations

that should be mentioned. First, a more accurate surface normal interpolation method is

required to generate more accurate and smooth normals in the regions of discontinuities

and also at the silhouettes. As discussed previously an interpolation method adaptive to

surface characteristics is required. Second, depth peeling pass, although accelerated by

52

a binary search on the bits, is still a hindrance while utilizing a voxelization resolution

higher than 512x512x256. To perform bitwise search more efficiently, a better support for

branching and bitwise operations is required on graphics hardware. With the fast paced

advances in GPUs toward general purpose computing, such support may be available in the

near future.

Currently, our implementation does not deal with the phenomenon of total internal

reflection. Simulation of total internal reflection requires binding of all the depth textures to

the rendering pipeline while advecting a photon. When a photon gets internally reflected, its

path can be traced against the immediately preceding depth layer instead of the succeeding

one. Since our depth images are stored as array of 2D textures in GPU memory, they need

to be attached to corresponding texture samplers in order to access them. Although Shader

Model 4.0 supports binding of 128 simultaneous texture samplers to a rendering pass, it

does not support variable indexing into the an array of texture samplers. Thus, a depth layer

cannot be accessed dynamically by simply varying its index. This can be accomplished by

performing depth peeling in a geometry shader to store depth images into a 3D texture,

where each slice in 3D texture would represent a depth image. It is also interesting to note

that even for the refracted light rays which travel parallel to the screen, an image-space

search doesn’t provide correct intersections; since these rays intersect the triangles that are

not facing the screen. A triangle at a silhouette is a good example. However, such triangles

are viewed along their edges and do not contribute significantly to the final depth images.

Thus, the light rays cannot be intersected with the pixels of such triangles and the algorithm

consequently converges to false intersections.

Chapter 5

CONCLUSION

In this thesis, we have presented an algorithm to interactively simulate the phe-

nomenon of refraction of light through multiple interfaces of deformable objects. We have

also demonstrated that this algorithm can be easily applied to multiple refractive objects in

a scene unlike previous approaches which have dealt with the scene with a single refractive

object. Our method is essentially a three-pass method. In the first pass, we obtain volu-

metric data containing surface occupancy information by dynamically voxelizing objects

which are represented as polygonal meshes. In the next pass, multiple layers or interfaces

represented by depth images are decoded from this volumetric data. Our depth layer peel-

ing technique allows for obtaining up to 32 depth layers which are already sorted from the

viewing direction. Finally, photons generated from the eye are traced through all these lay-

ers using an adaptive binary search as the last pass. Our photon tracing is physically-based;

however, we employ certain approximations to minimize the computational and storage

resources that it needs. A few of them include: normal interpolation with a fixed gradient

step, using a binary search over a linear search, and also the binary search is restricted by

the bound calculated using parallel reduction over low resolution depth images. We have

also discussed techniques to improve the performance at each rendering pass by exploit-

ing the capabilities of current graphics hardware. Furthermore, unlike previous techniques,

53

54

our method is suitable for the standard raster-based pipeline and works with the caustics

mapping techniques that allows us to render the refractive objects independently from the

diffuse surrounding objects in a scene.

We expect our method to be more efficient in the near future when graphics hardware

would provide better support for bitwise operations and branching instructions. Similarly,

it will be possible to achieve total internal refraction with the availability of variable in-

dexing of texture samplers which would allow for accessing any depth layer which is not

in sequence. Also, 128-bit blending would allow for obtaining more slices providing more

accurate depth images. We believe that our work opens up new avenues to explore vari-

ous real-time methods to approximate surface characteristics by using variable size depth

gradient operator or a context-sensitive method as mentioned in section 4.1. In addition to

simulating refraction, we hope that our method to obtain sorted depth images proves useful

for rendering other phenomena such as layered soft shadows.

REFERENCES

[1] Arvo, J. R. 1986. Backward Ray Tracing. In ACM SIGGRAPH ’86 Course Notes -

Developments in Ray Tracing, volume 12.

[2] Bavoil, L.; Callahan, S. P.; Lefohn, A.; Jo a. L. D. C.; and Silva, C. T. 2007. Multi-

fragment effects on the gpu using the k-buffer. In I3D ’07: Proceedings of the 2007

symposium on Interactive 3D graphics and games, 97–104. New York, NY, USA: ACM.

[3] Crane, K.; Llamas, I.; and Tariq, S. 2007. Real-time simulation and rendering of 3d

fluids. In Nguyen, H., ed., GPU Gems 3. Addison Wesley. chapter 30, 633–674.

[4] Dong, Z.; Chen, W.; Bao, H.; Zhang, H.; and Peng, Q. 2004. Real-time voxelization

for complex polygonal models. pg 00:43–50.

[5] Eisemann, E., and Décoret, X. 2006. Fast scene voxelization and applications. In

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 71–78. ACM

SIGGRAPH.

[6] Everitt, C. 2001. Interactive order-independent transparency. Technical report,

NVIDIA Corporation.

[7] Génevaux, O.; Larue, F.; and Dischler, J.-M. 2006. Interactive refraction on complex

static geometry using spherical harmonics. In I3D ’06: Proceedings of the 2006 sympo-

sium on Interactive 3D graphics and games, 145–152. New York, NY, USA: ACM.

[8] Günther, J.; Wald, I.; and Slusallek, P. 2004. Realtime Caustics using Distributed Pho-

ton Mapping. In Rendering Techniques 2004, Proceedings of the Eurographics Sympo-

sium on Rendering, 111–121.

55

56

[9] Ihrke, I.; Ziegler, G.; Tevs, A.; Theobalt, C.; Magnor, M.; and Seidel, H.-P. 2007.

Eikonal rendering: efficient light transport in refractive objects. ACM Trans. Graph.

26(3):59.

[10] Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the

eurographics workshop on Rendering techniques ’96, 21–30. London, UK: Springer-

Verlag.

[11] Khan, E. A.; Reinhard, E.; Fleming, R. W.; and Bülthoff, H. H. 2006. Image-based

material editing. ACM Trans. Graph. 25(3):654–663.

[12] Krüger, J.; Bürger, K.; and Westermann, R. 2006. Interactive screen-space accurate

photon tracing on gpus. In Rendering Techniques 2006: 17th Eurographics Workshop

on Rendering, 319–330.

[13] Myers, K., and Bavoil, L. 2007. Stencil routed a-buffer. In SIGGRAPH ’07: ACM

SIGGRAPH 2007 sketches, 21. New York, NY, USA: ACM.

[14] Oliveira, M. M., and Brauwers, M. 2007. Real-time refraction through deformable

objects. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics

and games, 89–96. New York, NY, USA: ACM.

[15] Purcell, T. J.; Donner, C.; Cammarano, M.; Jensen, H. W.; and Hanrahan, P. 2003.

Photon mapping on programmable graphics hardware. In Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics Hardware, 41–50. Eurographics

Association.

[16] Shah, M. A.; Konttinen, J.; and Pattanaik, S. 2007. Caustics mapping: An image-

space technique for real-time caustics. IEEE Transactions on Visualization and Com-

puter Graphics 13(2):272–280.

57

[17] Shin, B. S., and Shin, Y. G. 1995. Fast normal estimation using surface characteristics.

Visualization ’95. Proceedings., IEEE Conference on 159–166, 449.

[18] Shin, B. S. 1999. Efficient normal estimation using variable-size operator. In The

Journal of Visualization and Computer Animation, volume 10, 91–107. John Wiley and

Sons, Ltd.

[19] Sun, X.; Zhou, K.; Stollnitz, E.; Shi, J.; and Guo, B. 2008. Interactive relighting of

dynamic refractive objects. In ACM Transactions on Graphics, to appear.

[20] Wyman, C., and Davis, S. 2006. Interactive image-space techniques for approximat-

ing caustics. In I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics

and games, 153–160. New York, NY, USA: ACM.

[21] Wyman, C. 2005a. An approximate image-space approach for interactive refraction.

ACM Transactions on Graphics 24(3):1050–1053.

[22] Wyman, C. 2005b. Interactive image-space refraction of nearby geometry. In

GRAPHITE ’05: Proceedings of the 3rd international conference on Computer graphics

and interactive techniques in Australasia and South East Asia, 205–211. New York, NY,

USA: ACM.

[23] Wyman, C. 2008. Hierarchical caustic maps. In SI3D ’08: Proceedings of the 2008

symposium on Interactive 3D graphics and games, 163–171. New York, NY, USA:

ACM.

