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(a) Raw textures (167.7 MB) (b) VBR textures (14.9 MB)

Figure 1: Variable bit rate texture compression applied to the Napoleon Bonaparte scene from Sid Meier’s Civilization R© V
using 27 textures. Image (b) using VBR compressed textures has a Mean SSIM error of 0.9935 (best=1) and SHAME-II color
difference of 0.539 (best=0) compared to Image (a) using raw uncompressed textures.

Abstract
Variable bit rate compression can achieve better quality and compression rates than fixed bit rate methods. None
the less, GPU texturing uses lossy fixed bit rate methods like DXT to allow random access and on-the-fly decom-
pression during rendering. Changes in games and GPUs since DXT was developed make its compression artifacts
less acceptable, and texture bandwidth less of an issue, but texture size is a serious and growing problem. Games
use a large total volume of texture data, but have a much smaller active set. We present a new paradigm that
separates GPU decompression from rendering. Rendering is from uncompressed data, avoiding the need for ran-
dom access decompression. We demonstrate this paradigm with a new variable bit rate lossy texture compression
algorithm that is well suited to the GPU, including a new GPU-friendly formulation of range decoding, and a new
texture compression scheme averaging 12.4:1 lossy compression ratio on 471 real game textures with a quality
level similar to traditional DXT compression. The total game texture set are stored in the GPU in compressed
form, and decompressed for use in a fraction of a second per scene.

Categories and Subject Descriptors (according to ACM CCS): I.4.2 [Image Processing and Computer Vision]:
Compression—; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Texture

1. Introduction

GPUs use fixed bit-rate texture compression to save space
and rendering bandwidth. Each block of texture is com-
pressed to exactly the same size, so can be accessed and de-
compressed independently. For example, the DXT5 texture

format compresses each 4x4 block of RGBA pixels to 128
bits, for a 4:1 compression ratio. Unfortunately, fixed bit rate
compression inevitably has some blocks that are compressed
too much, leading to artifacts, and some blocks that could be
compressed more, leading to larger files.
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Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



Olano et al. / Variable Bit Rate GPU Texture Decompression

GPUs have become more and more effective at hiding mem-
ory latency with threads, making the bandwidth savings of
DXT less important for many applications. For example, for
the game shaders in Sid Meier’s Civilization R© V, render-
ing with DXT vs. uncompressed textures did not make any
noticeable performance difference, counter to the folk wis-
dom that DXT is necessary for game rendering bandwidth.
In addition, DXT artifacts are becoming less acceptable as
game quality expectations grow. Memory and disk savings
are still a key reason to continue using texture compression.
Most games use more texture than fits into memory. To swap
working sets, they pause with “loading” screens, or initially
load low resolution textures, so the player sees the textures
“res in” as they are playing. In a game like Civilization V, the
player can switch at any time between the game screen and
any of the world leaders with no warning. In this context,
“loading” screens are unacceptable.

Variable bit rate (VBR) compression adapts the compres-
sion rate to the data, but cannot be deterministically indexed.
Much game data, including animation data and audio, is al-
ready variable-bit-rate compressed, but decoded on the CPU.
Since memory capacity is a critical reason to use texture
compression, we propose a higher compression rate VBR
method with decompression into a working set of uncom-
pressed textures for rendering. While decompression does
not happen during rendering, it still must be fast enough to
avoid game stalls to decompress a texture.

We present a VBR texture compression algorithm designed
for fast GPU decompression. A high compression rate algo-
rithm that can be decompressed on the GPU allows a vast
increase in on-GPU texture storage. Even as future GPUs
move to unified memory, memory will still limit texture ca-
pacity, and fast GPU decompression still increases total tex-
ture capacity. Unlike most image compression algorithms,
which only reconstruct an image at a single resolution, our
algorithm reconstructs the entire MIP chain [Wil83], avoid-
ing the significant overhead of compressing each MIP level
independently, while allowing independent selection of MIP
filter or artistic tailoring of the MIP levels.

On RGB textures from the Kodak Image Suite [Fra10],
our lossless compression averages a 3.1:1 compression ra-
tio, half DXT’s 6:1 rate while reproducing the exact raw
pixel data. On a series of game textures from Civilization V,
our lossy compression resulted in an average compression
ratio of 12.4:1 (Figure 8). Figure 1 shows one of these
scenes, consisting of 27 textures with sizes ranging from
128x128 to 2048x2048, including 9 RGBA diffuse textures,
7 RGBA textures encoding specular color and power, 7 nor-
mal maps, 3 additional single-channel opacity maps, and 1
single-channel skin blur map. For the DXT comparison in
Figure 8, the diffuse and specular textures were encoded
with the BC3 format, the opacity and skin blur maps with
BC4, and the normal maps with BC5.

A typical world leader scene in the game averages 98 MB of

uncompressed texture. There are 18 leaders in the standard
game, for a total of nearly 1.8 GB (downloadable content
adds even more). It is not practical to keep all of the data
in memory (host or GPU) due to its size and the substantial
memory needs of unrelated game systems. In addition, it is
impossible to predict texture demand, since the player may
elect to visit any leader at any time. Dynamic loading from
disk cannot be accomplished without unacceptable stalls or
degrading image quality. Our VBR compression reduces the
average size of a leader from 98 MB to around 7-8 MB.
Given the small size, all of the leader textures can remain
permanently resident on the GPU in compressed form and
can be unpacked into a renderable form prior to entering a
leader scene. The decompression requires under 10 ms per
2048x2048 MIP texture, or roughly 100 ms per leader. This
avoids in-game loading delays, and enables use of larger tex-
tures, sized for HD resolution screens, rather than having to
settle for lower resolution and quality textures to fit within
memory and bandwidth limits.

In our case, we chose to render from RGBA textures be-
cause we deemed DXT unacceptable for our leader qual-
ity standards, and we saw no measurable performance dif-
ference. While we expect the performance difference to be
nominal for many cases, applications which are bandwidth
bound could elect to recompress the textures on the GPU
[vWn07, Cas07]. We already use this technique for in-game
dynamically generated terrain textures. In our experience,
recompressing to DXT on DX11 requires minimal overhead,
and is fast enough to be almost insignificant when compared
to VBR decompression. While this would forfeit any image
quality benefits from our technique, it would still yield all of
the storage and streaming benefits.

2. Background and Related Work

Compression/Entropy Coding: Data compression exploits
variations in the information entropy to store data more com-
pactly while still allowing entirely lossless reconstruction.
Since some patterns in the input stream are more likely than
others, the more likely patterns can be encoded with fewer
bits and less likely patterns with more bits. There are two
main parts to the compression problem: modeling the prob-
abilities for input symbols and using those probabilities to
construct a compressed data stream.

The probability model can be either adaptive or nonadaptive
[RL81]. Adaptive models refine an implicit initial estimate
as more of the data is decompressed, avoiding data overhead,
but increasing dependence and ordering constraints on the
compressed data stream [SCE01]. Non-adaptive models an-
alyze the input data probabilities. This can be a simple static
statistics table [Wal92], or parameters to a more complex sta-
tistical model [BS99, LW99]. Despite the storage overhead,
we choose to use a static statistics table since it requires the
least decompression-time computation.

c© 2012 The Author(s)
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Figure 2: Overview of GPU decompression algorithm. Each bundle of arrows is a parallel GPU compute kernel

Huffman coding compresses each symbol independently
[Huf52], but loses potential compression since each symbol
uses an integer number of bits. Other approaches compactly
encode small numbers [Eli75, MA05], or take advantage of
repeating patterns in the input [ZL77].

Arithmetic and range coding can represent several common
symbols with a single bit in the compressed stream, or an un-
common symbol with a long series of bits [HV94, Mar79].
We use a range coder because common range coder imple-
mentations operate on byte or larger units of data, which
is more friendly for GPU implementation, while arithmetic
coders operate a bit at a time. A range coder works directly
from probability estimates for the symbol to code. The to-
tal range of possible values is represented as an integer, and
each possible symbol uses a partition of this range.

Image Compression: Most image compression and decom-
pression is designed to run on a CPU to compress a single
image. Vector quantization can be applied at either the pixel
or block level [Hec82, BAC96]. These approaches are fixed
bit rate and inherently lossy, but amenable to random access
within the compressed texture.

A better compression quality and/or rate can be achieved
with variable bit rate compression. VBR image compres-
sion methods include one or more transforms before a fi-
nal entropy encoding stage. Most transform to a lumi-
nance/chrominance space (YIQ, YCbCr, YCoCg, Luv, etc.)
since humans are more sensitive to errors in luminance than
errors in chrominance [HS00]. They then transform to a
space with better probability characteristics for the variable
bit rate encoding, often in the form of a difference from
a prediction. Options include the DCT [Wal92] or the dis-
crete wavelet transform [Sha93,SCE01]. Lossy compression
is usually quantizes in this space. Quantized values are en-
coded losslessly to create the compressed data stream.

Wavelet Image Compression Zerotree encoding [Sha93]
and the subsequent wavelet compression in JPEG 2000
[SCE01] are both designed for CPU decompression, and
have interdependence between pixels or blocks that make
them ill suited to GPU parallelization. We borrow a few key
ideas from both in designing our compression algorithm.
These approaches perform a wavelet transform on the im-
age. Since each level of the wavelet pyramid approximates
the level below, the detail coefficients are likely to be near
zero. This probability differential is exploited in subsequent

entropy coding, identifying subclasses of pixels that have
differing and predictable probabilities.

GPU Texture Compression: GPU texture compression has
primarily focused on fixed-bit rate lossy methods [INH99,
SAM05, SP07]. These allow rendering directly from a com-
pressed texture at a cost in the overall quality and/or
compression rate. Specialized variations have been devel-
oped for normals [MAMS06] and high dynamic range data
[MCH∗06, RAI06].

Some hardware extensions have been proposed that would
allow more flexible on the fly compression. Inada and Mc-
Cool [IM06] proposed B-tree indexing hardware to support
random access within a variable bit rate compressed texture,
and Sun et al. [SLT∗09] proposed a general configurable fil-
tering unit. Our method decompresses variable bit rate tex-
tures using standard GPU computing.

GPU Compression/Decompression: Relatively little work
has been done to date on direct compression or decompres-
sion on the GPU. van Waveren and Castaño [vWn07,Cas07]
show DXT compression on the GPU. Lindstrom and Co-
hen [LC10] show GPU decompression of terrain. In their
work, each block of terrain is encoded one vertex at a time,
where three previously decoded vertices provide a planar ap-
proximation and encodes the difference from that plane us-
ing the RBUC residual coding algorithm [MA05].

3. VBR Algorithm

Our goals for a texture compression algorithm are:

1. Compress with equal or better quality and much more
compactly than fixed-rate texture compression

2. Compress an entire MIP chain, without constraints on
how the MIP levels are created

3. Decompress and load into GPU textures for rendering
fast enough to prevent noticeable game stalls

In the sections that follow, we show that a variable bit rate
(VBR) compression algorithm based on multi-resolution dif-
ference of MIP levels satisfies our first goal on size and qual-
ity and second goal for compressing an entire MIP chain.
We achieve similar to DXT compression rates for lossless
compression, and 3-5 times better than DXT for lossy com-
pression. In the process, we also develop a novel GPU range

c© 2012 The Author(s)
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decoder formulation that is more efficient on the GPU, but is
100% compatible with an existing CPU range coder [LI06].

The outline of our GPU decompression algorithm is shown
in Figure 2. The texture is decompressed in 16x16 blocks,
one GPU thread per block. Each thread uses an index to
find its starting place in the compressed data and produces
a block’s worth of MIP level difference data. The difference
data is converted into real pixel values and transformed from
YCbCr or another color space to RGBA to produce an un-
compressed texture with a MIP chain.

3.1. Difference of MIP levels

Most image compression operates on single images. Ad-
ditional MIP levels must be compressed separately or re-
computed after decompression. Wavelet compression has the
nice property that an approximation pyramid is created by
the decompression. Unfortunately, the approximation filter
is completely determined by the wavelet basis. It will not
work if we want a different MIP level filter for better filter
quality, or artistic control over individual MIP levels.

Shapiro [Sha93] used a wavelet tree, but suggests that his
zerotree approach could be applied to a Laplacian pyramid
instead. Like wavelet detail coefficients, the difference of bi-
linearly interpolated MIP levels provides all of the informa-
tion necessary to recreate the finer level from a coarser ap-
proximation. Unlike the wavelets used in prior work, the dif-
ference of MIP levels are not separable into horizontal and
vertical filters, but since bilinear reconstruction is hardware
accelerated, it is more efficient on the GPU than a separa-
ble wavelet filter with larger support. We do not make any
assumptions on the method used to generate the MIP levels.
Compression rate may suffer if the coarser MIP levels are
not predictive of the finer ones, but we will always recon-
struct the MIP levels given.

For lossy compression we drop bits from each level, or en-
tire levels for a channel. Since the difference coefficients are
applied to a bilinear reconstruction of the coarser level, over-
compression looks like linear interpolation artifacts rather
than blocking or ringing (Figure 3).

To avoid having loss in coarser MIP levels adversely impact
the quality of the finer MIP levels, we compute the MIP dif-
ferences after bit truncation. During compression, we com-
pute the difference for a MIP level, truncate it, encode it,
then reconstruct the MIP values using the truncated differ-
ences. The next level differences are computed relative to
the previous level exactly as it will be reconstructed during
decompression. Not only does this avoid propagating errors
from one MIP level to the next, but allows finer MIP levels
to be more accurate than the coarser level if desired.

(a) drop 6 lum. bits (b) drop 5 chrom. bits
Quality: 0.6568 / 25.9122 Quality: 0.9991 / 18.8855

(c) drop 2 lum. levels (d) drop 6 chrom. levels
Quality: 0.6919 / 4.7223 Quality: 0.9990 / 18.6832

Figure 3: Over compression (Quality: MSSIM/SHAME-II).

3.2. Entropy Coding

Our entropy coding of the MIP differences is inspired by
the method used in JPEG 2000 [SCE01], but with critical
modifications to be more efficient for GPU decoding. JPEG
2000 encodes one bit plane at a time, from MSB to LSB,
allowing bit planes to be globally sorted by importance. The
compressed stream can be truncated at any point to achieve
continuous variation in quality vs. compression ratio. To de-
termine entropy coding probabilities, each bit uses a 3x3
pixel neighborhood of previously decoded higher-order bits
together with bits from coarser wavelet levels to choose one
of three coding classes, likely to be 0, likely to be 1, or about
even probability of either.

We determine the probability classes for each bit based
solely on higher-order bits within a fixed 2x2 pixel neighbor-
hood, and encode all bits for each 2x2 neighborhood before
moving to the next. This has several advantages for GPU
decoding. By not including other MIP levels in the class de-
cision, we can decode the MIP differences of all levels si-
multaneously, increasing the number of GPU threads. Since
we decode all bits of one 2x2 neighborhood before moving
on, the partially decoded results can remain entirely in local
registers, and be written to global memory just once, when
the 2x2 neighborhood is complete. Coding loss is decided by
dropping bits or levels at encoding time.

3.3. Coding Blocks

To achieve good GPU decoding speed, we divide the image
into blocks, with GPU threads decoding the difference val-
ues for every block in every MIP level simultaneously. This
introduces a tradeoff between compression rate and GPU oc-
cupancy. Smaller blocks increases the number of threads, in-

c© 2012 The Author(s)
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creasing occupancy, but each block introduces overhead that
reduces the compression rate.

First, each GPU thread needs to know where its block starts,
with one 4-byte index per block. In addition, each indepen-
dent block has a compressed static probability table, plus a
4-byte overhead to flush the entropy encoder at the end of
the block. The block start position is stored in a MIP index
texture, reduced from the original MIP texture by the block
size. The index offsets could be compressed using the av-
erage expected compression rate as a prediction, but every
thread would need to decompress the index to find its start-
ing location, adding significantly to the total GPU decom-
pression time. Instead, we leave the index uncompressed as
a fixed overhead. For example, 16x16 blocks give an index
1/256th the size of the original texture, so a 2048x2048 tex-
ture with 12 MIP levels has a 128x128 index with 8 MIP
levels.

The block size must be a multiple of the 2x2 neighborhood
size. Since our textures are all power of two dimensions, we
also would like the block size be a power of two to avoid hav-
ing to deal with partial blocks (though partially filled blocks
could be accommodated if non-power-of-two textures were
needed). Figure 10 shows that the best compression rate was
for 32x32 blocks. Larger than this, and the static statistics
don’t predict well enough. Smaller than this, and the per-
block overhead starts to increase the compressed size. None
the less, we ultimately ended up using 16x16 blocks. The
smaller blocks result in slightly worse compression rate, but
allow four times as many threads, which gives a noticeable
boost to the GPU decoding performance.

The number of threads is given by the MIP expansion equa-
tion from the number of blocks in the base MIP level:

base = imagex ∗ imagey/block2

threads = (4∗base−1)/3.

The thread IDs are assigned first to each block in the base
level, then the next smallest, etc. Level L starts at

start(L) = (base−base∗2−2L)∗4/3.

Given this, each thread, t, can determine its level and posi-
tion within the level:

L =

⌊
1
2

log2

(
4 base

4 base−3 t

)⌋
offset = t− start(L)

3.4. Color Space Transformation

A data dependent transform prior to encoding can help
overall compression rate and quality. We have implemented
two, though others are possible. Color data is transformed
to a luminance/chrominance space. Chrominance channels
can generally be encoded with fewer bits and fewer MIP
levels without perceptible difference [HS00, Sha93, Wal92,

S t o r e any MIP l e v e l s s m a l l e r t h a n 2x2 as raw c o l o r s
Conve r t t o a p p r o p r i a t e c o l o r s p a c e
For each MIP l e v e l from c o a r s e s t t o f i n e s t

compute d i f f e r e n c e wi th p r e v i o u s l e v e l
t r u n c a t e b i t s

Compute p r o b a b i l i t i e s f o r a l l l e v e l s < b l o c k s i z e
Compress l e v e l s below t h e b l o c k s i z e t o g e t h e r
F l u s h c o m p r e s s i o n s t r e a m
For each MIP l e v e l

For each b l o c k
Wr i t e s t a r t i n g p o s i t i o n t o i n d e x t e x t u r e
Compute s t a t i c p r o b a b i l i t i e s
Encode r a n g e of b i t s and p r o b a b i l i t y t a b l e
For each 2x2 n e i g h b o r h o o d

For each b i t
Compute c l a s s e s and encode b i t s

F l u s h c o m p r e s s i o n s t r e a m

Figure 4: Pseudo-code for full VBR compression algorithm

Decode MIP l e v e l s s m a l l e r t h a n 2x2 as raw c o l o r s
Read s t a t s f o r l e v e l s below b l o c k s i z e and decompress
For each b l o c k i n i n d e x i n p a r a l l e l

Decode b i t r a n g e and p r o b a b i l i t y t a b l e
For each 2x2 n e i g h b o r h o o d

For each b i t
Compute c l a s s e s and decode b i t s

Wr i t e 2x2 n e i g h b o r h o o d t o d i f f e r e n c e t e x t u r e
For each MIP l e v e l from c o a r s e s t t o f i n e s t

For each p i x e l i n p a r a l l e l
Apply MIP d i f f e r e n c e s and i n v e r s e c o l o r t r a n s f o r m

Figure 5: Pseudo-code for VBR decompression algorithm

SCE01]. We use the YCbCr color space using an invertible
transform to allow for lossless compression [SCE01].

For masks or images with an alpha channel, if we are drop-
ping d bits, we can use the transform

al pha′ =
al pha∗255− (2d−1)

255−2∗ (2d−1)

This guarantees that even with the maximum error, a raw
al pha of 0 will give a compressed al pha′ of 0, and a raw
al pha of 1 will give a compressed al pha′ of 1.

3.5. VBR Algorithm Summary

The final VBR encoding and decoding algorithms are shown
in Figures 4 and 5. Note that the smallest levels that cannot
contain a 2x2 neighborhood (1x1 for a square texture; 1x2,
1x4, etc. for rectangular textures) are encoded as raw pix-
els. All levels from this to the block size (2x2, 4x4 and 8x8
for a square texture) are encoded with a single probability
table and decoded as a single serial step. Only levels from
the block size up are decoded in parallel. For a 2048x2048
texture, there are 21,845 16x16 blocks in the MIP pyramid.
The MIP differences are turned back into color in a process
similar to GPU MIP generation, with a kernel per level, each
with one GPU thread per pixel.

4. Range Decoder

In addition to tailoring the compression algorithm to the
GPU’s computational and memory architecture, our fast
GPU decompression also relies on a GPU friendly range de-
coder. This decoder is an alternate formulation of the CPU

c© 2012 The Author(s)
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range decoder by Lindstrom and Isenburg [Sub99,LI06] and
is 100% compatible with it. Figure 6 shows decoding code
for this coder. The entire compressed file is viewed as one
huge integer. The coder works with a 32-bit window on this
integer (code), and tracks the bottom (low) and size (range) of
a subrange of this 32-bit window.

Figure 6 has several aspects that hurt the GPU efficiency.
The compressed stream is read multiple times within the up-
date function, including once within a loop. Further, those
accesses are a byte at a time, when GPU memory accesses
are naturally 32-bit. We make three observations that allow
significant improvements (Figure 7).

First, the loop runs a maximum of three iterations:

low∧ (low+ range) (1)

has its highest-order bit where the top and bottom of the cur-
rent subrange differ. Each time through the loop, low and
range are both shifted left one byte, so the condition is also
shifted left one byte. Since range must be non-zero, equation
(1) has 1-3 zero bytes before the loop. Therefore, the loop
run a maximum of three times, and we can tell how many
times by the number of high-order zero bytes in equation (1)
and directly add that many bytes from the stream.

The second observation is that the window adjustment is ef-
fectively doing the same operation, but with a slightly differ-
ent derivation for the new range. Adjusting for the expected
change to range in the loop, we can determine ahead of any
access to the code stream whether and how many additional
bytes this might add. Together, these allow us to consolidate
the compressed stream accesses to a single instance which
may fetch between one and three new bytes.

The final observation is that these extra byte fetches may not
be aligned with the GPU word boundaries, so we end up
with fairly complex alignment code to fetch between zero
and two words and align the new bytes from them. Yet the
code word is just an unaligned 32-bit window on the com-
pressed stream. No operations are ever performed on it ex-
cept to move the window within the stream. Given that, the
update process really only needs to keep track of the current
byte position in the stream. If we make that change, then the
use of code in the decode() function becomes an unaligned
fetch of one word of data from the stream. In our current
implementation, we build that unaligned fetch out of two
aligned fetches from a GPU buffer, but future implementa-
tions could attempt to improve the memory bandwidth by
pulling in a larger window with a coalesced read then grab-
bing unaligned 32-bit blocks from that local copy of the data.

5. Results

Unlike mean square error or peak signal-to-noise ratio,
recent objective image comparison metrics weight differ-
ences in local image structure over visually difficult to de-
tect global changes. The Structural Similarity Index Metric

/ / r e t u r n v a l u e f o r t h e n e x t symbol , w i t h i n a t o t a l
/ / i n t e g e r r a n g e f o r a l l p o s s i b l e n e x t symbols
decode ( To ta lRange ) {

r e t u r n ( code−low ) / ( r a n g e /= To ta lRange ) ;
}

/ / u p d a t e s t a t e once we know t h a t t h e s t a r t v a l u e
/ / and i n t e g e r s u b r a n g e f o r t h e symbol
u p d a t e ( SymbolLow , SymbolRange ) {

/ / a d j u s t bounds t o c u r r e n t s u b r a n g e
low += SymbolLow∗ r a n g e ;
r a n g e ∗= SymbolRange ;

/ / s h i f t window i f done wi th t o p b y t e
w h i l e ( ( low ^ ( low+ r a n g e )) > >24 == 0) {

code = code <<8 | ∗ s t r e a m P t r ++;
low <<= 8 ;
r a n g e <<= 8 ;

}

/ / a d j u s t window i f r a n g e i s g e t t i n g t o o s m a l l
i f ( r a n g e >> 16 == 0) {

code = code << 8 | ∗ s t r e a m P t r ++;
code = code << 8 | ∗ s t r e a m P t r ++;
low <<= 1 6 ;
r a n g e = −low ;

}
}

Figure 6: Lindstrom and Isenberg range decoder

/ / Th i s i s t h e on ly p l a c e words a r e r e a d from t h e s t r e a m
decode ( To ta lRange ) {

r e t u r n ( una l ignedWord ( pos ) − low )
/ ( r a n g e /= To ta lRange ) ;

}

u p d a t e ( SymbolLow , SymbolRange ) {
low += SymbolLow∗ r a n g e ;
r a n g e ∗= SymbolRange ;

/ / f i g u r e o u t haw many b i t s t o s h i f t
u i n t b i t T e s t = low ^ ( low+ r a n g e ) ;
u i n t b i t S h i f t = 24 − ( f i r s t b i t h i g h ( b i t T e s t ) & ∼0x7 ) ;
u i n t r a n g e S h i f t = 16 ∗ ( r a n g e <= (0 x f f f f >> b i t S h i f t ) ) ;
b i t S h i f t += r a n g e S h i f t ;

/ / u p d a t e s t r e a m s t a t e f o r new b y t e s
pos += b i t S h i f t >> 3 ;
low <<= b i t S h i f t ;
r a n g e = r a n g e S h i f t ? (∼low +1) : ( range << b i t S h i f t ) ;

}

Figure 7: GPU range decoder

(SSIM) [WBSS04] is a good luminance comparison metric,
but is not suited for use on RGB images, since it is designed
to use luminance and contrast to extract structure from a
luminance-only image. SHAME-II [PH09] is a recent color
image quality metric with reasonable correlation to exist-
ing human subject user studies. It combines color differenc-
ing with contrast sensitive filtering and hue-angle weighting.
Both are full-reference comparison metrics which compare
a distorted image to a reference image. For luminance and
structure comparisons, we prefer SSIM, but for color differ-
ences, we supplement SSIM with SHAME-II. For a survey
and evaluation of other metrics, see Sheikh et al. [SSB06].

Most of our game color textures are RGBA. SSIM and
SHAME-II cannot measure differences in alpha, while mean
square error or PSNR can measure those differences, but fail
to adequately capture the impact of changes in alpha on the
final image. The same is true for other non-color data like
normal maps, tangent maps, opacity or blur maps, etc. The
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most reliable method of comparing compressed texture qual-
ity is a perceptual metric like SSIM or SHAME-II applied to
rendered images that use the compressed texture data. We
present two forms of comparison to evaluate our result. For
comparison against other (largely RGB, single-image) com-
pression methods, we use the Kodak Image Suite [Fra10]
standard image set. These comparisons are somewhat biased
against our method since they do not include non-color data,
nor encoding of the full MIP chain. None the less, they do
provide a common baseline comparable to other work. The
second comparison is for rendered leader scenes within Civ-
ilization V. This provides the true measure of in-game image
quality and scene load times.

Standard Image Suite Results: Figure 9 plots compari-
son metric vs. compression ratio for a set of fixed bit-rate
hardware compression algorithms, two quality settings for
JPEG2000, and our VBR algorithm with compression set-
tings in Figure 11. SSIM is 1 for an exact luminance match,
with decreasing values indicating worse structural quality.
For SHAME-II, a value of 0 is an exact color match with
increasing values for worse color quality.

The left two plots of Figure 9 show comparison metrics
vs. compression ratio on all of the Kodak Image Suite im-
ages [Fra10]. The VBR v1 variant achieves as good or bet-
ter compression ratios than BC7, but with better SSIM qual-
ity (greater than 0.9985). It trades a little in color quality,
but achieves compression ratios as high as 6.62:1. All of the
VBR variants maintain SSIM quality greater than 0.99 and
color quality no worse than the fixed-rate algorithms while
achieving compression ratios as high as 17.07:1.

The right two plots of Figure 9 show the comparison metrics
vs. compression ratio on the ‘Parrots’ image. Lossless VBR
achieves a compression ratio of 3.6:1 while reproducing the
exact raw texture. VBR v2 achieves a compression ratio of
10.75:1, over 1.79 times that of DXT1 and 2.5 times BC7,
while still having better SSIM quality. It does trade some
color quality compared to BC7 for this higher compression
ratio, but the color quality is still the second best and is only
about 0.536 worse than BC7.

Figure 12 shows cropped reference and closeup compressed
images. Notice the distinct blocking artifacts in DXT1 and
BC7 as compared to VBR v3. Also, the yellow and black
area has a loss of crispness and color quality in the DXT1
and BC7 compared to the VBR images.

Figure 13 is a study of quality and compression rate for a
range of lossy compression settings, dropping 0-3 bits and
0-1 levels of luminance, and 2-4 bits from the chrominance
channels. Each horizontal band in the top plot has differing
loss chrominance for a particular luminance setting. These
bands show that loss in luminance affects SSIM quality
while loss in chrominance has no effect on SSIM, but does
increase compression ratio. The bands are labeled according

to the combination of luminance bits and levels dropped –
Lum-BxLy drops x bits and y levels.

The bottom plot of Figure 13 shows that SHAME-II quality
is affected by loss in both luminance and chrominance. The
brown, red, and green points all drop three luminance bits,
and two, three, and four chrominance bits respectively. The
blue, magenta, and cyan points all drop four luminance bits,
and two, three, and four chrominance bits respectively. The
’+’ data points drop no luminance levels, while the ’◦’ data
points drop one luminance level.

Game Results: We have compressed the textures for world
leaders in Sid Meier’s Civilization R© V. Since the game
can be played at HD resolutions, texture sizes range up
to 2048x2048. The leaders include textures for diffuse
color, specular color and exponent, normals, tangents, trans-
parency and masking, and skin blur factors. For low-end
hardware, textures are decompressed on the CPU at a re-
duced resolution and paged into the GPU after the leader
scene is already playing. For DX11-class hardware, all
leader textures are kept resident on the GPU in compressed
form and decompressed when needed. Statistics on the lead-
ers are shown in Figure 8.

Compression rates vary by leader from about 10:1 to almost
20:1. Most textures were compressed with the v2 variant of
Figure 11, with some individual textures hand-tweaked to
use less lossy compression. Load times for both VBR and
DXT are shorter than would be expected for a typical user
due to the high RPM disk on our test system. The total set
of textures is almost 2 GB. Even in DXT form, the full set
of textures is almost half a gigabyte. In VBR compressed
form, these 18 leaders only take 142 MB, so we can keep
all of them resident on the GPU. Decompressing the texture
set for any leader takes from about 50 to 150 ms. If we in-
clude the additional expansion leaders (22 in all), the total
is 2.25 GB of uncompressed texture, but only 180 MB with
VBR compression.

6. Conclusions

We have presented a VBR image compression algorithm
capable of lossless compression with average compression
rate for RGBA textures approaching that of current widely
used fixed bit-rate lossy compression algorithms, and lossy
compression rate averaging better than 12:1. This compres-
sion algorithm is based on a difference of MIP levels, and
naturally reproduces the MIP levels given. This decouples
the choice of MIP filter from the compression scheme, and
seamlessly allows artist tweaked MIP levels. Using our al-
gorithm, a 2048x2048 MIP texture can be decompressed on
the GPU in under 10 ms, and the average decompression rate
over a range of real game textures is under 3.2 ms.

The compression method in this paper was developed for
a AAA game targeting a multi-core PC with a DX11 GPU
at HD resolution. Like most games in this class, we have
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gigabytes of total texture, but use no more that 5-10% of
it in any one scene. For Civilization V, we have the added
constraint that we need to be able to switch to any arbitrary
scene at any time, making typical dynamic loading solutions
untenable. With VBR compression, we can store the work-
ing set for one scene, plus the compressed form of the rest
of the leader textures locally. Our method will be most use-
ful for games targeting high-end platforms, with high quality
standards, where the uncompressed current scene and com-
pressed global texture set can live on the GPU. It could also
be useful in for a game with an even larger total working
set but less random scene access, with a multi-level tex-
ture caching scheme of disk or memory storage, local GPU
compressed storage, and GPU decompressed storage. As ca-
pabilities from high-end PCs move to lower-end PCs and
consoles, we expect game quality standards to increase, and
even more games to need advanced compression methods to
manage their texture resources.

We have described in detail the design decisions behind our
specific VBR algorithm, but a key contribution of this pa-
per is the insight that there is value to fast GPU decompres-
sion that is not part of the rendering process. Existing GPU
texture compression is handicapped by having to support de-
compression during random texel access while rendering. By
decoupling the decompression from the rendering, the GPU
is capable of significantly better compression rates and qual-
ity. Even though the working set of textures is full size, this
approach vastly increases the total amount of texture that can
be stored on the GPU in compressed form to be quickly de-
compressed into a working texture when needed.

In addition, though the combined load and decompress time
for VBR is about the same as the load time for DXT, the load
time is only about a quarter of the total. As GPU computa-
tional power increases, VBR textures may become a useful
tool to accelerate streaming of textures during game play.

We have many ideas on how to improve the compression
quality, compression rate, and performance in future work.
SSIM, SHAME-II or similar color metric could drive the
loss decisions per block rather than relying on the eye of a
programmer or artist to choose a good setting. Additional
color transforms could improve the compression rate and
quality for non-color textures. A smarter probability model
for the statistics table could reduce the per-block overhead.
We might be able to rearrange the compression order to al-
low more efficient consolidated GPU writes. Finally, know-
ing the expected probabilities for each of the probability
classes, it would be worth further investigating dynamic
probability estimation, since a dynamic estimator would do
away with the need for a static statistics table if one can be
found that is fast enough and sufficiently accurate.
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Size (MB) Load time (ms) Decompress Compression Quality
Leader Textures Raw DXT VBR Raw DXT VBR on GPU (ms) Ratio SSIM SHAME-II
Al-Rashid 33 110.6 30.4 9.1 615.9 176.5 64.7 107.8 12.1:1 0.9954 0.783
Alexander 39 161.7 40.7 12.5 838.5 200.7 49.5 117.7 12.9:1 0.9911 0.652
Askia* 21 93.1 24.4 9.9 462.0 96.5 112.8 76.3 9.4:1 0.9849 2.163
Augustus* 20 65.7 15.2 4.7 374.9 44.4 8.8 59.1 14.0:1 0.9908 1.453
Bismarck 24 96.4 24.5 7.9 511.5 108.4 17.5 68.3 12.3:1 0.9968 0.599
Catherine 31 163.7 41.1 8.9 925.8 198.9 26.5 116.8 18.5:1 0.9958 0.478
Darius 16 37.9 9.5 2.8 110.3 20.9 6.1 44.0 13.6:1 0.9950 0.913
Elizabeth 22 91.3 23.6 8.4 419.1 85.8 16.1 78.1 10.9:1 0.9921 1.043
Gandhi 23 91.5 24.3 6.1 377.8 107.2 12.8 69.9 15.1:1 0.9901 0.679
Hiawatha 29 110.8 27.6 8.9 465.1 98.4 18.6 88.3 12.5:1 0.9962 1.148
Montezuma* 32 109.2 27.7 11.1 431.8 91.8 23.2 106.7 9.9:1 0.9870 1.822
Napoleon 27 167.7 42.0 14.9 888.1 188.5 44.4 104.3 11.3:1 0.9935 0.539
Oda 27 58.5 15.2 4.8 160.9 39.5 9.3 75.5 12.2:1 0.9940 0.616
Ramesses 30 44.7 12.2 5.1 184.0 32.1 9.1 83.9 8.8:1 0.9953 2.499
Ramkhamhaeng 17 105.7 27.9 8.6 469.3 100.6 15.6 70.4 12.4:1 0.9943 0.464
Sulieman 39 98.4 25.2 8.5 387.0 89.7 18.9 109.2 11.6:1 0.9935 1.203
Washington* 22 80.5 21.6 5.0 298.2 70.4 12.4 68.9 16.0:1 0.9904 1.158
Wu 19 78.9 20.5 5.0 302.7 55.2 9.7 57.3 15.8:1 0.9889 1.690
Totals 471 1766.5 453.7 142.0 8223.0 1805.6 475.9 1502.4 12.4:1

Figure 8: Texture statistics for the original 18 Civilization R© V leaders (CPU: Intel Xeon X5460 Quad Core 3.16 GHz; GPU:
NVIDIA GTX 480; Disk: 15,000 RPM Hitachi UltraStar 15K300). Leaders marked * have particle systems disabled for image
comparison. Textures is the total number for that leader. Raw textures are uncompressed, using only the appropriate number
of channels for their data. DXT textures use BC3, BC4 or BC5 as appropriate for the texture. The VBR size includes both
compressed data and index. Load times are the time to load textures or compressed data from the disk to the GPU. Decompress
is the time to decompress the textures on the GPU from compressed data already resident there. Compression ratio is VBR
relative to RAW. Best Mean SSIM=1 and best SHAME-II=0.
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Figure 9: Quality versus Compression Rate. The left two plots show all Kodak Image Suite images. The right two plots just
show the ’Parrots’ image. For the SSIM metric, an exact pixel match has a value of 1, with decreasing values indicating worse
structural quality. For the SHAME-II metric, a value of 0 indicates an exact color match (no color difference) with increasing
values indicating worse color quality.
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Figure 10: Lossless compression ratio (black
bars) and GPU decode speed (blue line) of
varying block sizes with a 512x512 texture
(’Parrots’) on an NVIDIA GTX480.

Bits Levels
Dropped Dropped

Name Y Cb Cr Y Cb Cr
Lossless 0 0 0 0 0 0
VBR v1 0 2 2 0 0 0
VBR v2 2 2 2 0 1 1
VBR v3 1 2 2 0 1 1

Figure 11: Compression pa-
rameters for tested VBR vari-
ants.

(a) Reference (b) BC7 (c) DXT1

(d) VBR v1 (e) VBR v2 (f) VBR v3

Figure 12: Crops of the “Parrots” image.
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Figure 13: Quality versus Compression Rate
for 2,250 different compression settings.
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