
Interactive Volume Isosurface Rendering Using BT Volumes

John Kloetzli

UMBC

Marc Olano

UMBC

Penny Rheingans ∗

UMBC

Figure 1: Several renderings of BT Volume data. Left: Real-time isosurface rendering of a molecular simulation. Center: Composition of
two real-time isosurface renderings of a foot data set. Our system renders any isosurface level and supports changing the isosurface level in
real time. Right: Higher detail rendering of engine block generated offline.

Abstract

This paper presents a volume representation format called BT Vol-
umes, along with a technique to interactively render them and two
methods to create useful data in BT Volume format, including high
quality reconstruction filtering. Medical applications rely heavily
on isosurface data to visualize anatomy, but current real-time iso-
surface rendering techniques such as Marching Cubes are limited
in flexibility and provide only low-order linear reconstruction fil-
tering. As an alternative to creating triangular geometry to repre-
sent the surface, we ray trace an exact isosurface directly inside a
pixel shader. We construct a set of Bézier Tetrahedra to approx-
imate any reconstruction filter with arbitrary footprint. We then
precompute the volume convolved with this filter as a tetrahedral
grid with Bézier weights that can be ray traced in graphics hard-
ware. Our technique is fast, renders any isosurface level without
additional work, and performs high quality reconstruction filtering
with arbitrary footprints and reconstruction kernels.

Keywords: Volume Rendering, Isosurface Rendering, Ray Trac-
ing, Graphics Hardware, Bézier Tetrahedra, Real Time, Interactive,
BT Volumes

1 Introduction

Volume rendering converts volumetric data into meaningful 2D im-
ages. Applications of volume rendering range from hurricane visu-
alization to medical diagnosis and planning to smoke and particle
systems. There are many types of volume rendering which vary
greatly in applicability and style. We focus specifically on isosur-
face rendering, where we display a surface representing the locus
of points in the volume matching a user-specified value. They form
a 2D surface in 3D space similar to the way contour lines on a topo-

∗e-mail: jk3,olano,rheingan@cs.umbc.edu

graphical map form 1D lines on a 2D map. Isosurface rendering is
particularly popular in medical visualization, where it effectively
addresses a number of unique challenges. Many medical scan-
ning techniques return volumetric scalar grids representing phys-
ical quantities. For example, Computed Tomography (CT) scans
measure density, while Magnetic Resonance Imaging (MRI) scans
measure the resonant response of hydrogen atoms in the tissue to
specific frequency RF pulses. Areas of interest in medical volumes
often coincide with specific value boundaries. For example, a doc-
tor seeking to localize a tumor for radiation treatment planning is
interested in the exact boundary of the tumor, while a doctor work-
ing on a complex cranio-facial reconstruction in interested in the
precise shape of the skull.

We propose a new method for representing volumetric data which
allows rendering arbitrary isosurfaces of a high-quality reconstruc-
tion of a volume. Our method works by approximating an arbi-
trary reconstruction filter with a set of cubic Bézier Tetrahedra. We
show that convolution of this reconstruction filter with a volume is
equivalent to ‘collapsing’ the reconstruction filter into a tetrahedral
mesh of the volume. We call this representation of the volume as
Bézier Tetrahedra a BT Volume. We can interactively render the
isosurface within each tetrahedron using local ray tracing within
the tetrahedral volume. Our choice of cubic Bézier Tetrahedra as
a basis allows the exact ray intersection equations to be computed
within each tetrahedron on the GPU.

Isosurface renderings of volumes generally have large empty spaces
where the volume density was either well above or below the iso-
surface value. Most isosurface rendering methods create triangle
meshes for the isosurface of interest and display that mesh using
established 3D polygonal rendering techniques. This allows them
to extract the isosurface information while ignoring areas outside
of the range of the current isosurface value. The most common of
these belong to the Marching Cubes family of techniques [Lorensen
and Cline 1987]. In contrast, our method does not create a triangle
mesh, but renders isosurfaces directly using ray tracing.

Marching Cubes methods are based on a linear reconstruction of
the volume. Since each triangle is planar, the resulting surface will
always have a faceted appearance caused by the flat triangles. Lin-
ear reconstruction is considered a poor method for creating continu-
ous functions from a discrete sampling. Higher quality reconstruc-
tion techniques also exist but are much more expensive to evalu-



ate. Cubic reconstruction of a volume is considered a high quality
method but requires evaluating a 64-component summation as op-
posed to the eight values required for the linear technique. High
quality rendering of volumes is not attempted in real time because
of the processing power and data bandwidth required. Our tech-
nique changes this by representing the high quality reconstruction
of a volume (including cubic and higher order filters) in a format
which can be rendered quickly.

Recently, consumer-level Graphics Processing Units (GPUs) have
reached a height of performance which far surpasses current CPU
technology. Of particular interest are the variety of new local
ray-tracing techniques, which use the traditional graphics hard-
ware pipeline to render simple primitives which serve as bounding
boxes on the true surface being rendered. For each point on the
bounding surface, the GPU pixel-level processors compute view-
ing ray-object intersection locally inside each bounding box [Poli-
carpo et al. 2005; Tatarchuk 2006; Ritsche 2006; Loop and Blinn
2006]. This technique forms the basis of our method, which creates
a regular grid of polynomial surfaces, called Bézier Tetrahedra, to
represent the reconstructed surface and uses each tetrahedron as a
local bounding box for ray tracing of the surface within. Our imple-
mentation makes efficient use of graphics hardware geometry and
pixel shaders to render a smooth resolution-independent isosurface
at interactive rates.

2 Previous Work

Discrete sampling and reconstruction in volumes has been under
investigation for many years. Mitchell and Netravali [1988] present
a thorough overview of the topic and a set of criteria for designing
new high quality filters. In addition, they present a family of new
cubic reconstruction filters which include Bézier and Catmull-Rom
polynomials as special cases.

In order to deal with sampling and reconstruction within the do-
main of volume rendering, Marschner and Lobb [1994] performed
an evaluation of common reconstruction filters in the context of vol-
ume reconstruction. They looked at linear, cubic, truncated Gaus-
sian, cosine bell, and windowed sync filters, evaluating each one ac-
cording to an error metric which included measurements of smooth-
ness and several types of aliasing.

One common method for rendering isosurfaces of volumes is called
Marching Cubes. It works by computing a triangle mesh for a spe-
cific isosurface value, using graphics hardware to render the triangle
mesh [Lorensen and Cline 1987]. Since GPUs are designed to ren-
der triangles very quickly, these methods are fast once the triangle
mesh has been created. Unfortunately, they necessarily use linear
reconstruction to create the triangle mesh, which is generally con-
sidered a poor reconstruction filter. Even though this method has
been around for more than 20 years, it is still very popular because
it is easy to use, portable, and fast.

The basic Marching Cubes algorithm looks at eight adjacent sam-
ple points in the volume. Because of the linear reconstruction used,
these sample points must surround the target isosurface value for
the isosurface to have passed through this cube. Otherwise the cube
is entirely inside or entirely outside the isosurface being rendered,
and no work needs to be done. When this method is performed for
all sets of adjacent sample points defining a cube, the entire isosur-
face can be roughly reconstructed. Many other methods based upon
this technique have been developed, including methods which use
different primitive shapes (Marching Diamonds [Anderson et al.
2005] and Marching Tetrahedra [Treece et al. 1999] ) and real-time
versions which take advantage of graphics hardware to accelerate
the process [Johansson and Carr 2006].

An interesting extension to the Marching Cubes method by Theisel
[2002] notes that the particular reconstruction method that March-
ing Cubes uses does not match standard linear interpolation. In fact,
the contours along the side of each cube under linear reconstruction
are curves, while in the isosurface resulting from Marching Cubes
they will be lines. Theisel presented a modification for Marching
Cubes that generates rational Bézier patches that exactly match the
linear reconstruction instead of triangles.

Another class of fast isosurface volume rendering, which we call
direct volume methods because they do not require preprocessing,
works by directly intersecting each viewing ray with the isosur-
face being rendered. This typically involves solving ray-patch in-
tersection equations, which are slow and cumbersome to evaluate
in graphics hardware. Levoy [1990] developed a graphics hardware
accelerated method to do this, while Parker et al. [1999] presented a
brute-force version running on a cluster. A more advanced version
of this approach by Rössl et al. [2003] found the optimal weights
for quadratic BT on a simplical grid, ray tracing the resulting sur-
face. Their method did not use graphics hardware acceleration.

3 Background

In order to describe our volume rendering method we first must de-
scribe some of the background knowledge our method is built upon.
We discuss the applicable mathematics behind sampling and recon-
struction of volumes, followed by the mathematical description of
our rendering primitive, the Bèzier Tetrahedron (BT). Finally, we
describe how BT can be rendered in real-time on current genera-
tion graphics hardware.

3.1 Sampling and Reconstruction

For the purposes of this paper we will discuss only regularly sam-
pled scalar-valued rectilinear fields. Each point of data in these
volumes is called a sample point and, in the absence of some re-
construction filter, the field is undefined between sample points.

Reconstruction is the process of creating a continuous function
from a discrete volume. Reconstruction requires blending sample
points from the volume using a filter kernel to define how the sam-
ple points should be blended together. In most signal processing
contexts, a sinc filter is considered to provide perfect reconstruc-
tion, since it reproduces the maximum frequencies captured by the
sampling while avoiding adding any higher frequencies. In image
processing, the infinite radius of this filter and the ringing it gener-
ates make it less desirable than other filters which avoid these prob-
lems, though they may introduce more blurring or aliasing. Given
this, we would like to be able to support a variety of reconstruction
kernels of differing sizes.

The mathematical tool which we use to perform reconstruction fil-
tering is called discrete convolution, which, in the context of vol-
umes, is a function of 3D space that sums a reversed kernel filter
with a volume. For some cuboid domain C ∈ Z

3, the formula for
the convolution of A : C → R by a kernel G : R

3 → R at the
point P in R ∈ R

3 is the summation over all possible values of
integer-valued (a, b, c) in the kernel domain given by

(A ∗ G) (P) =
X

a, b, c ∈ R
A(a, b, c) · G (P − (a, b, c))

(1)

We will use this definition later to convolve our reconstruction filter
with volume data.



3.2 Bézier Tetrahedra

Loop and Blinn [2006] developed a rendering method for a spe-
cific type of Bézier solid called a Bézier Tetrahedra which they
implemented on graphics hardware. The BT are a set of poly-
nomial solids in the Bernstein basis where each element of the
family is defined by a bounding tetrahedra and a set of weights.
The cubic BT formula, which is the order BT used in our method,
can be written in terms of the points which define the bounding

tetrahedra T = (T1,T2,T3,T4)T
and the set of 20 weights

{wijkl : i + j + k + l = 3}. Given a point P = (x, y, z, 1) ∈
P

`

R
3
´

(three-dimensional Euclidian projective space), define the
barycentric coordinates of the point to be r = (r, s, t, u) =

P · (T)−1
. The formula for the BT associated with the tetrahe-

dron defined by the points T is given by

bt(P) =
X

i+j+k+l=3

wijkl

„

3
ijkl

«

r
i
s

j
t
k
u

l
(2)

3.3 Bézier Tetrahedra as Tensors

BT have a tensor form which allows transformation into different
spaces. All tensors in this section are written in Einstein Index No-
tation. To write a BT in tensor form, consider the BT defined by a
tetrahedron T and a set of weights {wijkl : i + j + k + l = 3}.
Construct a 43 tensor of control points B by

Bα1,α2,α3
= weα1

+eα2
+eα3

+eα4

where eα is a four component vector with a 1 at position α and all
other components equal to 0. This formulation of a BT weight set
is much less compact than the original formulation from equation 2
(64 scalar values compared to 20 in the original version), so our im-
plementation never stores the tensor form, instead expanding from
the tetrahedral form to compute transformations and encoding the
result back into the tetrahedral form.

One additional useful feature of Bézier Tetrahedra is the bounding
property, which describes limits on the range of the solid. For a
given BT with weights wi,j,k,l, any value resulting from evaluation
of the BT will have to be between the highest and lowest weight
values. In other words, for any point P in the domain of a BT
with weights wi,j,k,l the resulting value Q = bt(P) must be be-
tween the maximum and minimum values in the weight set wi,j,k,l.
Therefore, one can determine easily if a given BT has an isosurface
of a specific level by computing the min and max weights. We use
this fact to perform early culling of tetrahedra which cannot contain
any of a particular isosurface level.

3.4 Ray Tracing Bézier Tetrahedra

Our BT ray-tracing method is an extension of the method first de-
scribed by Loop and Blinn [2006], described here. The process of
developing a fast ray-tracing method for BT involves several steps,
including transformation of the weight tensor and bounding tetrahe-
dra into screen space and solving the ray-BT intersection equations.

The transformation into screen space is defined by a 4x4 transfor-
mation matrix called the World-View-Projection matrix, denoted
WVP. Because the vertices of the bounding tetrahedron T are
in Euclidean space already, applying the World-View-Projection
transformation directly will transform them into screen space. The
BT weights, however, are in the barycentric space defined for equa-
tion 2 above, so we will need to multiply the transformation from
barycentric coordinates into Euclidean space (T) with the World-
View-Projection transformation. The inverse of this composite

transformation provides us with an equation for the barycentric co-
ordinates r of a screen space point Ps given by

r = Ps · (T · WVP)−1 = Ps · W

where W is the inverse composite transform. This makes the trans-
formed weight tensor

B̃β1,β2,β3
= W

α1

β1
W

α2

β2
W

α3

β3
Bα1,α2,α3

(3)

The zero-isosurface of the transformed BT is

Ps
β1Ps

β2Ps
β3B̃β1,β2,β3

= 0 (4)

Finally, we must evaluate the intersection of equation 4 with each
viewing ray. We refer the reader to the work by Loop and Blinn
[2006] for a more detailed explanation of this process. The fun-
damental observation is that in screen space each viewing ray has
constant x and y values, only varying in the z direction. Therefore,
plugging the equation for a viewing ray into equation 4 will collapse
the left side of the equation from a polynomial with four variables
into a univariate polynomial in z. The roots of that equation define
the intersection points of the ray with the surface.

4 Method

We present a method for representing volumetric functions as a set
of Bézier Tetrahedra and describe how to render these volumes effi-
ciently on graphics hardware. This involves dividing a cuboid vol-
ume into a tetrahedral grid following certain regularity properties
and using BT to define density within each grid point. We use this
representation, called BT Volumes, to store a volumetric function
in a form where any isosurface can be rendered quickly. With that
alone, we have a volumetric extension of the work of Loop and
Blinn [2006], but like their work, authoring of these BT datasets
could be a problem.

Section 4.2 presents two ways to generate useful BT Volumes. The
first method shows how to approximate any continuous scalar vol-
umetric function with a BT Volume using a least-squares tech-
nique. This approximation can be arbitrarily close depending on
how many tetrahedra comprise each voxel of the BT Volume.

The second way uses an existing BT Volume as a reconstruction
kernel which can be convolved with any discrete volume to gen-
erate a new BT Volume. This means that we can exactly render
isosurfaces of the reconstruction of any scalar volume with a BT
Volume filter, which allows us to generate a high-quality, smooth,
resolution-independent representation of a convolved volume.

4.1 Representing Volumetric Functions

There are several steps to storing volumetric data as a BT Volume.
First, we divide the volume space (which, without loss of gener-
ality, we assume to be a cuboid with integer dimensions) into unit
cubes. We refer to each of the cubes as “voxels” because our recon-
struction technique maps each voxel of the input volume into one of
the cubes. We then define the “canonical mapping” to create a way
of dividing each voxel into tetrahedra. Our implementation uses the
standard 6-tetrahedron method of breaking a cube into tetrahedra,
but many other methods can also be used as described in Section
4.1.3. This results in the entire volume space covered by a grid of
tetrahedra such that every point intersects at least one tetrahedron.

Now that our tetrahedral grid has been created, we associate a BT
with each of the grid points and develop a transformation pipeline
which allows us to render any isosurface of these BT. Since a BT



Figure 2: An isosurface rendering of a BT Volume approximating
a Gaussian reconstruction filter where lines denote the boundaries
between adjacent tetrahedra. Note that tetrahedra which would not
contribute to this particular isosurface are culled before rendering.
We generate filters which are C0 continuous and enforce zero val-
ues on the boundary.

is defined inside its bounding tetrahedron, each point in the volume
now has a density value defined by the BT associated with that par-
ticular tetrahedral grid point. With correctly defined weights this
representation allows many continuous volumetric functions to be
represented. A little extra work (beyond that described by Loop and
Blinn [2006]) must be done to allow ray tracing of arbitrary isosur-
faces, since the ray-tracing method we presented earlier assumed
that we were generating the zero-isosurface of the solid.

Note that, like Loop and Blinn’s original BT-rendering paper
[2006], this section assumes a BT Volume already exists. We are
inherently limited by the expressiveness of the Bézier Tetrahedra
primitive which we use — not every volumetric function has an ex-
act BT Volume representation — and by our ability to author BT
Volumes. To handle arbitrary volumes, we need the filtering and
fitting tools described in Section 4.2.

4.1.1 Foundations

The first step in defining BT Volumes is to divide the volume do-
main into 3D cubes, breaking each cube into tetrahedra. Each tetra-
hedron is associated with a BT solid to represent the portion of the
volume within the tetrahedron. This division into BT ensures that
every position in the volume is “covered” by at least one BT —
positions exactly on the boundary between tetrahedra can be con-
sidered as covered by either BT.

Notationally we will refer to each of the small cubes which com-
prise the volume space by cl,m,n, where l, m, and n denote the
(x, y, z) position within the volume space. We will call each of
these cubes “voxels” of the BT Volume because they are analogous
to voxels of standard volumes. In fact, our convolution method de-
scribed later will generate one BT Volume voxel for every voxel
in the original volume data. For convenience, we assume that BT
Volume voxels, as well as standard volume voxels, are unit-sized.

4.1.2 Abstract Mapping for Tetrahedra

We will divide a BT Volume voxel into tetrahedra by the following
function, called the canonical mapping.

κ : [0, 0, 0] × [1, 1, 1] → {h : h ∈ H} (5)

where H is the set of unique indices for each tetrahedron defined
by {h : h ∈ Z, [1...n]} where n is the number of tetrahedra com-
prising each voxel. The important feature of κ is that, because it
maps from the unit cube, each cube must divide into tetrahedra in
the same way and therefore the entire tetrahedral partition is shift
invariant. Because our rendering method does not rely on a specific
κ, we present an abstract definition which provides a minimum set
of properties required. Let us define B̄T lmn to be the set of all
BT in voxel cl,m,n, where each member has a tetrahedron number,
h ∈ H , which acts as a unique identifier within that voxel. Let the
mapping

BTlmn (h) = bt
h ∈ B̄T lmn (6)

denote the BT (bth) associated with index h. The BT in the volume
corresponding to a point Q ∈ R

3 is then denoted by

τ = BT⌊Q⌋ (κ (Q − ⌊Q⌋)) (7)

4.1.3 Specific Mappings for Tetrahedra

One simple κ is to create six BT for each voxel clmn, packing the
voxel using the standard method for dividing a cube into six tetra-
hedra. This is the formula we have used in our implementation,
but other mappings are possible and there are several properties to
consider when deciding which to use [Carr et al. 2006]. The top of
Figure 2 pictures a BT approximation of a Gaussian function using
this method, which generates 1296 BT for a volume with 63 voxels.

4.1.4 Representing any Isosurface Level

We have introduced Bézier Tetrahedra in equation 2 as a polynomial
solid which resides inside the barycentric coordinates defined by a
bounding tetrahedron, T. In Section 3.4 we extended our under-
standing of BT by showing 1) how we can represent them in tensor
notation and 2) how this new tensor formulation can be transformed
into spaces other than the barycentric coordinates used in the defi-
nition. In this section we use these two facts to develop a new way
of rendering arbitrary isosurfaces of a BT.

The final BT isosurface equation we presented in equation 4 for ray
tracing represents the zero-density isosurface of the solid. How-
ever, we want to be able to render arbitrary isosurfaces in our vol-
ume. Fortunately, adding a constant value to a BT results in another
BT, so that for any BT a there exists another BT b such that the x-
isosurface of a equals the zero-isosurface of b. This is based upon
the fact that BT are polynomials which, if expressed in the power
basis, would have a constant term. Subtracting from this constant
term the density of the isosurface to render has the effect of “shift-
ing” the densities of the entire solid by that amount so that they line
up with the zero-isosurface. This enables us to render any isosur-
face of a BT by simply replacing it with its “shifted” zero-isosurface
pair and using the methods described in Section 3.4 to ray trace the
new BT.

In order to actually find the modified weights, we have to transform
the BT into a space in which one of the weights corresponds to a
constant term. Inspection of equation 2 shows that Euclidean space
will serve this purpose well since the value of u will be the homo-
geneous value in the position vector, which will always be equal



to 1 by equation 2. This will make the weight corresponding to
(i, j, k, l) = (0, 0, 0, 3) a constant value. By the same process as
equation 3, we can write the transformed tensor by

B̂β1,β2,β3
= T

−1α1

β1
T

−1α2

β2
T

−1α3

β3
Bα1,α2,α3

(8)

Equation 4 shows us that the only value in the tensor which contains

the weight from position (0, 0, 0, 3) is B̂3,3,3. Therefore, adding
the density value d to this weight will result in

B̄β1,β2,β3
=

(

B̂β1,β2,β3
+ d if (β1, β2, β3) = (3, 3, 3)

B̂β1,β2,β3
otherwise

(9)

Finally, transforming B̄ into screen space is given by

B̃β1,β2,β3
= WVP

−1α1

β1
WVP

−1α2

β2
WVP

−1α3

β3
B̄α1,α2,α3

(10)

This process divides the transformation from equation 3 into two
parts (equations 8 and 10) with the isosurface level selection (equa-
tion 9) inserted between. The result of these three equations is the

screen-space, scaled tensor-form BT B̃, which can then be substi-
tuted into equation 4 for ray tracing.

4.1.5 Rendering

In order to actually render each tetrahedral primitive, we perform a
method similar to Loop and Blinn [2006]. Despite our changes to
support arbitrary isosurface values, the rendering method is effec-
tively the same. It is important to note that we only use orthogo-
nal projection in our implementation, as it greatly simplifies a cru-
cial portion of the rendering. Other than this one step, which will
be identified as having this requirement, our system works equally
well for both perspective and orthogonal projection.

We render BT Volumes in DirectX 10 using Shader Model 4.0 in
order to be able to leverage geometry shaders. For this section we
view a BT Volume as a tetrahedral grid since each voxel consists
of some number of tetrahedra. Each point in the grid is represented
with a single vertex in a vertex buffer containing its BT weights in
tetrahedral form. We perform an optimization in this phase by only
storing grid points which might result in an isosurface-containing
tetrahedron, which we determine by looking at the BT weights.
According to the BT bounding property, the minimum and maxi-
mum weights form a boundary on the density of all points inside
the solid.

If both extrema are on the same side of the range considered im-
portant (which implies that this BT does not contribute to any im-
portant isosurface) the BT is thrown away. This optimization can
save a significant amount of space depending on the distribution of
density in the volume and demonstrates one advantage of storing
our data as vertex attributes instead of textures. The actual range
considered interesting is somewhat application specific. Each BT
that passes this test is transformed into Euclidean space by equa-
tion 8 and into tetrahedral indexing form for compactness before
being stored in its vertex. The position semantic of the vertex is set
to the middle of the voxel space. The vertex buffer is interpreted as
a point list during the rendering phase.

We employ a geometry buffer to expand each tetrahedron into
screen-space triangles. We solve this problem efficiently by com-
puting a triangle strip for each tetrahedron in the mapping κ which
represents the screen-space triangle vertices. Because each voxel
uses the same mapping κ to divide into tetrahedra, this can be done
once for the entire volume and transformed into the local space of

each voxel in the shader. We perform this per-frame on the CPU be-
fore any rendering is performed. This only works under orthogonal
projection since perspective projection will change the screen space
triangles of two different BT with the same tetrahedron number h.

Each pixel needs to know both the transformed BT tensor and the
portion of the viewing ray which is inside the tetrahedron. Only
intersections of the viewing ray and tensor BT which are inside
the bounds of the tetrahedron count as hits, since each BT is only
defined within its bounding tetrahedron. The geometry shader is
responsible for calculating the extents of the tetrahedron in the z
dimension at each vertex and storing these values in each vertex
for interpolation. The geometry shader also unpacks the BT into
tensor form, calculates the scaled tensor using equation 9, trans-
forms the tensor into screen space using equation 10 and packs the
BT back into tetrahedral form and into each output vertex for the
screen-space triangles. Since the weights are equal across the en-
tire primitive, the same values are stored at each vertex.

Our implementation also uses additional small optimizations not
described here for the sake of brevity, but none of them significantly
change the method or add extra limitations not described in this
paper.

4.2 Reconstructing a BT Volume

Although the BT Volumes rendering algorithm is interesting as an
example of geometry and pixel shaders, the fundamental question is
how to generate a BT Volume which represents useful data. Section
4.2.1 describes how to approximate arbitrary continuous volumetric
functions as a BT Volume using a least squares method, but a more
interesting approach is to find a way of expressing the result of re-
construction filtering an arbitrary scalar volume as a BT Volume. In
other words, can we find a way of representing a reconstruction fil-
ter such that discrete convolution of an arbitrary scalar-valued vol-
ume with that filter produces a BT Volume. It turns out that this is
exactly what happens when the reconstruction filter itself is a BT
Volume which shares a similar κ function as the resulting BT Vol-
ume. This is described in detail in Section 4.2.2.

4.2.1 Approximating an Arbitrary Volume

In order to generate a BT Volume to approximate an arbitrary
scalar-valued volumetric function we first have to create a tetra-
hedral grid for the BT Volume which surrounds the entire function,
as described in Section 4.1.2 and following. Our reconstruction
method requires that these voxels overlap with the reconstructed
volume voxels, so scaling is determined by the number of voxels
used in the approximation. The specific mapping κ used will deter-
mine how close our approximation can be to the original function.
The two main properties of κ which effect this are 1) the number of
tetrahedra in the mapping and 2) the spatial distribution of tetrahe-
dra in in the domain. Increasing the number of tetrahedra increases
the representative power of the BT Volume by allowing higher fre-
quencies to be represented. A survey of common tetrahedral grids,
including many which satisfy the constraints of a κ mapping, is
described by Carr et al. [2006]. Determining the optimal κ for
a particular volume in terms of the balance of rendering cost and
expressive power is an interesting open research problem.

Once we generate our bounding tetrahedra, we have to complete
each BT in the volume by determining the optimal weights. Since
BT are polynomial, a simple least-squares approach is possible. We
determine a set of sample points distributed evenly in the barycen-
tric coordinates of each bounding tetrahedron, transforming the
point into Euclidean space to evaluate the target function value at
each of them. We perform least-squares fitting on all BT at once in



order to ensure c0 continuity. In addition, we artificially clamp all
boundary values to zero before using a filter.

4.2.2 Using a BT Volume as a Filter

Since a volumetric reconstruction filter is simply a scalar-valued
volume function, we can create a BT Volume approximation by the
method from the previous section. We require that filter voxels co-
incide with voxels in the scalar volume. Consider a reconstruction
filter, G, expressed as a BT Volume, in the formula for discrete
convolution given in equation 1. Substituting X − (a, b, c) for Q
in equation 7 gives the specific tetrahedron τ in the reconstruction
filter as

τ = BT⌊X⌋−(a,b,c) (κ (X − ⌊X⌋)) (11)

which can be evaluated (according to equation 2) by

G (X − (a, b, c)) =
τ(X − (a, b, c)) =

P

i+j+k+l=3
wijkl

„

3
ijkl

«

risjtkul
(12)

where r = (r, s, t, u) = (X − (a, b, c)) · (T)−1
and T is defined

from the bounding tetrahedron of τ . We can substitute equation 12
for G to get

(A ∗ G) (P) =
P

(a,b,c)∈C

0

@

P

i+j+k

+l=3

wijkl

„

3
ijkl

«

risjtkul

1

A A ((a, b, c))

Note that we do not have to sum over H because we defined κ not
to have overlap — we only have to loop for tetrahedra with index
h = κ(X − ⌊X⌋). Note that the tetrahedral indices i, j, k, l do not
depend on the value of the outer summation. In addition, the values
r, s, t, u are identical for every tetrahedron with the same h index,
so they also do not depend on the outer summation. Rearranging
the equation to move all terms possible out of this summation gives

(A ∗ G) (P) =
P

i+j+k

+l=3

„

3
ijkl

«

risjtkul

P

(a,b,c)∈C
(wijkl · A (a, b, c))

(13)

By inspection this is the equation of a BT with the weight compo-
nent equal to the entire second summation. Also note that as long
as κ(X− (a, b, c)) returns the same h value, which it will within a
voxel, equation 13 will produce the same BT coefficients, implying
that the κ function of the resulting BT Volume will be the same as
the κ of the filter from equation 11.

The intuitive explanation behind this derivation is to consider the
view of convolution as a sum of kernel functions centered on each
sample point and weighted by the sample value. Since the volume
samples are evenly spaced and κ is the same for each voxel, each
tetrahedron in the result will be covered by one and only one tetra-
hedron from each piecewise BT kernel in the sum (see Figure 3).
So each tetrahedron of the full volume can be expressed as a sum
of BT from the kernels. BT are closed under addition, so the result
of the convolution is a single BT for each tetrahedron in the full
volume.

Figure 3: We model convolution as a summation of BT solids. In
order to convolve one tetrahedron of a BT Volume, pictured above
in red, with a BT Volume filter with the same κ function, we need
to sum together the contributions of overlapping BT in all possible
translations of the filter, each scaled by the sample value at that
filter position.

Figure 4: Several shots in a zoom animation of a 323 volume re-
construction show the resolution independence of the BT Volume
format.

There is, however one important change required in order to main-
tain a smooth result. In equation 1 the order of voxels is reversed in
the filter, but all values within a voxel are not. In order to maintain
continuity between voxels, it is necessary to invert each voxel in
place before evaluating equation 13. Therefore, the κ function of
the resulting BT Volume will be an inverted version of the filter κ.

This is the main result from our work and allows us to represent a
volume convolved with a BT filter as a BT Volume. The power of
this result lies in the fact that BT volumes can be rendered in real
time, thus allowing us to render high quality convolved volumes
exactly, assuming we can represent the reconstruction filter as a BT
Volume.



4.3 Algorithm

Our system uses all of the methods presented in this paper in a
rendering algorithm as specified below.

Preprocess

• For every filter kernel, create the BT Volume approximation.
• For any filter kernel/volume pair, perform convolution to get

a BT Volume.

Runtime

• For every new isosurface to render, cull out non-intersecting
tetrahedra on BT Volume.

• For every frame, construct screen-space triangles in a Geom-
etry Shader and ray trace isosurface.

5 Results

We implemented our system on top of the Direct3D 10 graphics
API running on an NVIDIA 8800 GTS GPU. One feature Windows
Vista provides which enhances the usability of our system is virtu-
alization of graphics hardware memory. The space requirement of
BT Volumes is very large, limiting the size volumes which can be
rendered on graphics cards with less memory. Graphics memory
virtualization allows us to transparently render BT Volumes which
would otherwise require more space than our graphics card could
support. In practice this enables rendering of large BT Volumes
with a small performance hit on systems which would otherwise
not have enough memory or require special paging code.

Although rendering a BT Volume is fast enough to be done in real
time, computing the convolved BT Volume data is slower than we
expected. Our implementation uses graphics hardware to accelerate
the process, but still requires more than 30 seconds to convolve a
1283 volume with a 63 filter. Note that the convolution step only
has to be performed once for a given volume/filter pair, and load-
ing a stored BT Volume into graphics memory is very fast. The
remainder of this section details rendering performance and space
requirements of our system.

5.1 Rendering Performance

Performance was GPU bound and the CPU under-utilized. In gen-
eral, volumes up to size 643 run in interactive rates after optimiza-
tion, while larger volumes require multiple passes to complete suc-
cessfully. One optimization we performed was to cull-out all tetra-
hedra which did not contribute to a specific isosurface level in a
geometry shader pre-pass, streaming all vertices which pass the test
into a second buffer which is rendered until the isosurface changes.
All images in this paper representing volumes of that size or smaller
were captured from a live run of our application. The table below
summarizes performance for various volumes at a screen resolution
of 1600× 1200 with roughly screen-filling views on both graphics
cards. The two numbers given for each frames-per-second speed
are the steady-state rendering speed of the slowest and fastest iso-
surface of a specific volume. Performance as the isosurface level
changes dips slightly below these numbers because of the pre-pass
which culls out all non-contributing tetrahedra.

Images of test models reconstructed and rendered using BT Vol-
umes are shown in Figures 1,2, 4, and 5. For comparison, a March-
ing Cubes rendering of the 1283 foot is shown in Figure 6.

5.2 Space Requirements

The space requirements of BT Volume data are very large. This is
to be expected because of the massive amount of information being

stored. BT Volumes represent a continuous function with tremen-
dous representative capability, but this comes at a cost. Because
each tetrahedron in the volume requires twenty weights to fully de-
fine a BT, and there are at least five tetrahedra in each voxel (the
most compact κ consists of five tetrahedra), a naive implementation
would require at least 100 times the space of a floating-point vol-
ume of the same size. For larger volumes we store 16-bit precision
floats, but clearly size is still an issue. One optimization we per-
form is to throw away voxels which do not contain any isosurface
within a range of interest. We throw away voxels which contain
only isosurfaces within a small delta of zero. In practice the space
saved depends completely on the volume and the size delta used.
We have seen savings up to 50 percent for models with large empty
spaces. The table below lists the space requirements for each of
the models we rendered. Entries with a * used 16-bit precision and
culled voxels contributing less than 7.8 × 10−3 to save space.

Name Dimensions MB GTS-FPS

Engine* 64 × 1282 127 N/A

Foot High* 1283 187 N/A

Foot Low 643 135 5-8

Molecule 643 135 3-6

Bucky 323 17 10-14

Filter 63 .11 35-200

6 Conclusion and Future Work

In this paper we have presented a novel method for representing
volumetric data in a resolution independent manner called a BT
Volume. This representation is comprised of a tetrahedral grid con-
taining Bézier Tetrahedra polynomial solids with special regularity
requirements. We have demonstrated an efficient rendering algo-
rithm for BT Volumes as well as two ways to project useful data
into the BT Volume format. Rendering is achieved through the use
of local ray-intersection equations on the graphics card for each
tetrahedron individually. The geometry shader is used to transform
each BT into screen space before rendering, as well as set the iso-
surface of the volume to render. The first method to create a BT
Volume we presented was a simple least-squares approximation of
an arbitrary volumetric function. The second method uses this least-
squares technique to generate a BT Volume representation of a re-
construction filter, which we pre-convolve with an arbitrary scalar
rectilinear volume. We showed how this formulation of the con-
volution equation results in another BT Volume which equals the
reconstructed data.

Although our implementation is complete enough to act as a proof-
of-concept for the rendering technique, several areas could be im-
proved. Our least-squares approximation does not enforce C1 con-
tinuity. In addition, because of various graphics hardware precision
issues, a few pixels will incorrectly miss the isosurface being ren-
dered. Although this artifact does appear in images in this paper, it
is not as noticeable in static images as it is in motion.

In addition, we feel that there are several directions of possible fu-
ture related research. So far we have only explored some interac-
tive applications of our volume representation, but we believe that
the flexibility of our system will also be useful for offline render-
ing. Exploring how the BT Volume representation/filtering methods
presented in this paper can be enhanced further is an area which
may produce useful results. Some possible directions to explore
include acceleration of offline rendering for large data sets, analy-
sis of different approximate filters, using higher order polynomial
solids and/or solids of a different class (e.g., tensor product patches
instead of simplex), and efficient compression/storage of BT Vol-
ume data.



Figure 5: Two images rendered with our system. Left: 643 foot
volume isosurface corresponding to bone density. Right: The same
volume at 1283 resolution. Insets show how smooth the isosurface
remains even at high resolution.

Acknowledgements

This work was funded in part by NSF grant 0121288. We
would like to thank our anonymous reviewers for helping with
the technical presentation of this paper. All volume data was
taken from The Volume Library (http://www9.informatik.uni-
erlangen.de/External/vollib/). We would also like to thank Dr.
Alark Joshi for his support and help.

References

ANDERSON, J. C., BENNETT, J., AND JOY, K. I. 2005. Marching
diamonds for unstructured meshes. In IEEE Visualization 2005,
423–429.

BAJAJ, C. L., CHEN, J., AND XU, G. 1995. Modeling with cubic
a-patches. ACM Trans. Graph. 14, 2, 103–133.

CARR, H., MOLLER, T., AND SNOEYINK, J. 2006. Artifacts
caused by simplicial subdivision. IEEE Transactions on Visual-
ization and Computer Graphics 12, 2, 231–242.

JOHANSSON, G., AND CARR, H. 2006. Accelerating marching
cubes with graphics hardware. In CASCON ’06: Proceedings
of the 2006 conference of the Center for Advanced Studies on
Collaborative research, ACM Press, New York, NY, USA, 378.

LEVOY, M. 1990. Efficient ray tracing of volume data. ACM Trans.
Graph. 9, 3, 245–261.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press, New
York, NY, USA, 1000–1009.

LOOP, C., AND BLINN, J. 2006. Real-time gpu rendering of piece-
wise algebraic surfaces. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, ACM Press, New York, NY, USA, 664–670.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference on

Figure 6: Comparison image using the Marching Cubes algorithm

at 1283 (as implemented by ParaView), showing the rough and
noisy nature of Marching Cubes renderings. Inset shows signifi-
cant linear interpolation artifacts (visible as linear features in the
shading and geometry).

Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 163–169.

MARSCHNER, S. R., AND LOBB, R. J. 1994. An evaluation of
reconstruction filters for volume rendering. In VIS ’94: Pro-
ceedings of the conference on Visualization ’94, IEEE Computer
Society Press, Los Alamitos, CA, USA, 100–107.

MITCHELL, D. P., AND NETRAVALI, A. N. 1988. Reconstruction
filters in computer-graphics. In SIGGRAPH ’88: Proceedings of
the 15th annual conference on Computer graphics and interac-
tive techniques, ACM Press, New York, NY, USA, 221–228.

PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-P., HANSEN,
C., AND SHIRLEY, P. 1999. Interactive ray tracing for volume
visualization. IEEE Transactions on Visualization and Computer
Graphics 5, 3 (/), 238–250.

POLICARPO, F., OLIVEIRA, M. M., AND JO A. L. D. C. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. In
I3D ’05: Proceedings of the 2005 symposium on Interactive 3D
graphics and games, ACM Press, New York, NY, USA, 155–
162.

RITSCHE, N. 2006. Real-time shell space rendering of volu-
metric geometry. In GRAPHITE ’06: Proceedings of the 4th
international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, ACM Press, New
York, NY, USA, 265–274.

ROSSL, C., ZEILFELDER, F., NURNBERGER, G., AND SEIDEL,
H.-P. 2003. Visualization of volume data with quadratic super
splines. In VIS ’03: Proceedings of the 14th IEEE Visualization
2003 (VIS’03), IEEE Computer Society, Washington, DC, USA,
52–60.

TATARCHUK, N. 2006. Dynamic parallax occlusion mapping with
approximate soft shadows. In I3D ’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games, ACM Press,
New York, NY, USA, 63–69.

THEISEL, H. 2002. Exact isosurfaces for marching cubes. In Com-
puter Graphics Forum, Blackwell Publishers for Eurographics
Association, 19–31.

TREECE, G. M., PRAGER, R. W., AND GEE, A. H. 1999. Reg-
ularised marching tetrahedra: improved iso-surface extraction.
Computers and Graphics 23, 4, 583–598.


