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3D Transformations
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Transformation

Webster: The operation of changing one configuration or expression into another in
accordance with a mathematical rule
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Using Transformation

• Points on object represented as vector offset from origin
• Transform is a vector to vector function

• p⃗′ = f (p⃗)

• Relativity:
• From p⃗′ point of view, object is transformed
• From p⃗ point of view, coordinate system changes

• Inverse transform, p⃗ = f −1(p⃗′)
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Composing Transforms

• Order matters
• R(T (p⃗)) = R ◦ T (p⃗)
• T (R(p⃗)) = T ◦ R(p⃗)
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Inverting Composed Transforms

• Reverse order
• (R ◦ T )−1(p⃗′) = T−1(R−1(p⃗′))
• (T ◦ R)−1(p⃗′) = R−1(T−1(p⃗′))
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Translation

• p⃗′ = p⃗ + t⃗

•

p′xp′y
p′z

 =

pxpy
pz

+

txty
tz

 =

px + tx
py + ty
pz + tz


• t⃗ says where p⃗-space origin ends up (p⃗′ = 0⃗ + t⃗)

• Composition: p⃗′ = (p⃗ + t⃗0) + t⃗1 = p⃗ + (t⃗0 + t⃗1)
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Linear Transforms

•

p′xp′y
p′z

 =

a b c
d e f
g h i

pxpy
pz


• Matrix says where p⃗-space axes end up

•

ad
g

 =

a b c
d e f
g h i

10
0


be
h

 =

a b c
d e f
g h i

01
0


cf
i

 =

a b c
d e f
g h i

00
1


• Composition: p⃗′ = M (N p⃗) = (M N)p⃗
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Common case: Scaling

•

p′xp′y
p′z

 =

sx px
sy py
sz pz

 =

sx 0 0
0 sy 0
0 0 sz

pxpy
pz


• Inverse:

1/sx 0 0
0 1/sy 0
0 0 1/sz


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Common case: Reflection

• Negative scaling

•

p′xp′y
p′z

 =

−px
py
pz

 =

−1 0 0
0 1 0
0 0 1

pxpy
pz


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Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

X

Y

Z

• Rotate around Z: p⃗′ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 p⃗

• Orthogonal, so M−1 = MT
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Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

Y

Z

X

• Rotate around X: p⃗′ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 p⃗

• Orthogonal, so M−1 = MT
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Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

Z

X

Y

• Rotate around Y: p⃗′ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 p⃗

• Orthogonal, so M−1 = MT
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Composing Transforms

• Scale by s along axis â
• Rotate to align â with Z
• Scale along Z
• Rotate back
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Rotate by α around X into XZ plane

X

Y

Z

• Projection of â onto YZ: −→ayz =

 0
ay
az


• length d =

√
(ay )2 + (az)2

• So cosα = az/d , sinα = ay/d

• RX =

1 0 0
0 az/d −ay/d
0 ay/d az/d


• Result â′ =

ax0
d


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Rotate by -β around Y to Z axis

X

Y

Z

• â′ =

ax0
d


• length = 1

• So cosβ = d , sinβ = ax

• RY =

 d 0 −ax
0 1 0
ax 0 d


• Result â′′ =

00
1


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Composing Transforms

• Scale by s along Z: SZ =

1 0 0
0 1 0
0 0 s


• Scale by s along axis â

• Rotate to align â with XZ plane
• Rotate to align â with Z axis
• Scale along Z
• Undo Z-axis alignment rotation
• Undo XZ-plane alignment rotation
• p⃗′ = R−1

X R−1
Y SZRYRX p⃗
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Affine Transforms

• Affine = Linear + Translation

• Composition? A (B p⃗ + t⃗0) + t⃗1 = A B p⃗ + A t⃗0 + t⃗1
• Yuck!
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Homogeneous Coordinates

• Add a ’1’ to each point

•


p′x
p′y
p′z
1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



px
py
pz
1


• p⃗′x = (a px + b py + c pz) + tx

• p⃗′y = (d px + e py + f pz) + ty

• p⃗′z = (g px + h py + i pz) + tz
• 1 = (0px + 0py + 0pz) + 1
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Homogeneous Coordinates

•


p′x
p′y
p′z
1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



px
py
pz
1


• p⃗′ =

[
x⃗ y⃗ z⃗ t⃗

]
p⃗

• t⃗ says where the p⃗-space origin ends up
• x⃗ , y⃗ , z⃗ say where the p⃗-space axes end up

• Composition: Just matrix multiplies!
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Composing Transforms

• Rotate by θ about line between p⃗0 and p⃗1:
• Translate p⃗0 to origin
• Rotate to align p⃗1 − p⃗0 with Z
• Rotate by θ around Z
• Undo p⃗1 − p⃗0 rotation
• Undo translation

• T−1R−1
X R−1

Y RZ (θ)RYRXT
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Vectors

• Transform by Jacobian Matrix
• Matrix of partial derivatives

•


x ′

y ′

z ′

1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



x
y
z
1

 →

x ′y ′

z ′

 =

a x + b y + c z + tx
d x + e y + f z + ty
g x + h y + i z + tz


• J =

∂x ′/∂x ∂x ′/∂y ∂x ′/∂z
∂y ′/∂x ∂y ′/∂y ∂y ′/∂z
∂z ′/∂x ∂z ′/∂y ∂z ′/∂z

 =

a b c
d e f
g h i


• Use upper-left 3x3, or 0 for final coordinate:

•

a b c
d e f
g h i

xy
z

 or


a b c tx
d e f ty
g h i tz
0 0 0 1



x
y
z
0


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Normals

• Normal should remain perpendicular to tangent vectors

• n⃗ · v⃗ = n⃗′ · v⃗ ′ = 0

•
[
nx ny nz

] vxvy
vz

 =
([
nx ny nz

]
J−1

)J

vxvy
vz

 = 0

• n⃗′ = n⃗J−1

• Multiply by inverse on right
• OR multiply column normal by inverse transpose

• n⃗′ = (J−1)T n⃗
• (J−1)T = J if J is orthogonal (only rotations)
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Coordinate System / Space

• Origin + Axes

• Reference frame

• Convert by matrix
• OpenGL convention (we use this!): Points are columns

• p⃗table = TableFromPencil p⃗pencil
• p⃗room = RoomFromTable TableFromPencil p⃗pencil
• p⃗room = RoomFromPencil p⃗pencil

• Same thing in D3D convention (Points are rows, everything transposed)
• p⃗table = p⃗pencil PencilToTable
• p⃗room = p⃗pencil PencilToTable TableToRoom
• p⃗room = p⃗pencil PencilToRoom
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Nesting

Room

Desk

Student Book Notebook

Desk

Student Notebook

Podium

Laptop

Board

Eraser
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Matrix Stack

• Remember transformation, return to it later

• Push a copy, modify the copy, pop

• Keep matrix and update matrix and inverse

• Push and pop both matrix and inverse together

code stack (start with Identity)
transform(WorldFromRoom); WfR
push; WfR WfR
transform(RoomFromDesk); WfD WfR
push; WfD WfD WfR
transform(DeskFromStudent); WfS WfD WfR
pop; WfD WfR
push; WfD WfD WfR
transform(DeskFromBook); WfB WfD WfR
...
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Common Spaces

• Object / Model
• Logical coordinates for modeling
• May have several more levels

• World
• Common coordinates for everything

• View / Camera / Eye
• eye/camera at (0, 0, 0), looking down Z (or -Z) axis
• planes: left, right, top, bottom, near/hither, far/yon

• Normalized Device Coordinates (NDC) / Clip
• Visible portion of scene from (−1,−1,−1) to (1, 1, 1)
• Sometimes 0 to 1 (D3D uses (−1,−1, 0) to (1, 1, 1))

• Raster / Pixel / Viewport
• 0, 0 to x-resolution, y-resolution

• Device / Screen
• May translate or scale to fit actual screen
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WorldFromModel / ViewFromModel

• WorldFromModel
• All shading and rendering in World space
• Transform all objects and lights

• ViewFromModel
• World can be any common space, might as well use View space
• Serves just as well for single view
• Old OpenGL used to have a MODELVIEW transform built in

• Ray tracing implicitly does World → Raster
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World Coordinate Precision

• Floating point precision is not enough for large worlds
• Float precision of x is (next lower power of 2) * 2−23 ≈ x ∗ 10−7

• Earth radius 6.378 ∗ 106m; UMBC at 39.2498◦N, 76.7115◦W
• ∴ X = 1.135 ∗ 106m;Y = 4.807 ∗ 106m;Z = 4.035 ∗ 106m
• Position resolution: X ± 0.125m;Y ± 0.5m;Z ± 0.25m

• Use doubles ... or recenter world space
• UnrealEngine: Translated World or Large World Coordinates (LWC)
• Translated World: origin at camera since floating point precision is better near origin

• Errors are farther away where they’re harder to see

• LWC: include a tile translation exactly representable as float (0’s in least significant
bits) and float world positions relative to tile.

• Only need to worry about this for huge worlds
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ViewFromWorld

• Also called Viewing or Camera transform
• LookAt

• −−→
from,

−→
to ,−→up

• ŵ = normalize(
−→
to −

−−→
from); û = normalize(ŵ ×−→up); v̂ = û × ŵ

•
[
û v̂ ŵ

−−→
from

]
• Roll / Pitch / Yaw (use without roll for FPS)

• Translate to camera center, rotate around camera
• Rz Rx Ry T
• Can have gimbal lock when first and last axes align

• Orbit
• Rotate around object center, translate out
• T Rz Rx Ry

• Also can have gimbal lock
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NDCFromView

• Also called Projection transform
• Orthographic / Parallel

• Translate & Scale to view volume

•


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f − n+f

n−f

0 0 0 1


• Perspective

• More complicated...
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RasterFromNDC

• Also called Viewport transform

• [−1, 1], [−1, 1], [−1, 1] → [0, nx ], [0, ny ], [0, nz ]

• or → [−1
2 , nx −

1
2 ], [−

1
2 , ny −

1
2 ], [−

1
2 , nz −

1
2 ]

• Translate by (1, 1, 1): (−1,−1,−1) → (0, 0, 0); (1, 1, 1) → (2, 2, 2)
• Scale by (nx/2, ny/2, nz/2): (2, 2, 2) → (nx , ny , nz)
• (if needed) Translate by (− 1

2 ,−
1
2 ,−

1
2 ) — puts pixel centers at integer coordinates

nx
2 0 0 nx

2
0

ny
2 0

ny
2

0 0 nz
2

nz
2

0 0 0 1

 or


nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1


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ScreenFromRaster

• Usually just a translation
• Some game consoles include scaling for performance
• More complicated for tiled displays, domes, etc.

• Usually handled by windowing system
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Perspective View Frustum

• Orthographic view volume is a rectangular volume

• Perspective is a truncated pyramid or frustum

near / hither

far / yon

rightleft

bottom

top

near / hither

far / yon

right
left

bottom

top

eye
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Perspective Transform

• Ray tracing
• Given screen (sx , sy ), parameterize all points p⃗

• Perspective Transform
• Given p⃗, find (sx , sy )
• Use similar triangles
• sy/d = py/pz So sy = d py/pz
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Homogeneous Equations

• Same total degree for every term

• Introduce a new redundant variable
• Plane equation

• aX + bY + c = 0
• X = x/w ,Y = y/w
• a x/w + b y/w + c = 0
• → a x + b y + cw = 0

• Quadric
• aX 2 + bX Y + cY 2 + dX + eY + f = 0
• X = x/w ,Y = y/w
• a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
• → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0
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Homogeneous Coordinates

• Rather than (x , y , z , 1), use (x , y , z ,w)

• Real 3D point is (X ,Y ,Z ) = (x/w , y/w , z/w)

• Can represent Perspective Transform as 4x4 matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0



px
py
pz
1

 =


px
py
pz

pz/d

 →

d px/pz
d py/pz

d


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Homogeneous Depth
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0



px
py
pz
1

 =


px
py
pz

pz/d

 →

d px/pz
d py/pz

d


• Lose depth information
• Can’t get d p′z/pz = pz

• Plus x/z , y/z , z isn’t linear

• Use Projective Geometry
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Projective Geometry

• If (x , y , z) lie on a plane, (x/z , y/z , 1/z) also lie on a plane

• 1/z is strictly ordered: if z1 < z2, then 1/z1 > 1/z2
• New matrix: 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



px
py
pz
1

 =


px
py
1
pz

 →

px/pzpy/pz
1/pz


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Getting Fancy

• Tuning transform output
• Field of view (x/y scale)
• Near/far range (z scale and translate)

a 0 0 0
0 b 0 0
0 0 c d
0 0 −1 0



px
py
pz
1

 =


a px
b py

c pz + d
−pz

 →

 −a px/pz
−b py/pz
−c − d/pz


• b = 1/tan(yfov/2); a = 1/tan(xfov/2) = b ∗ height/width;
• OpenGL convention: Solve for (0, 0,−n) → (0, 0,−1); (0, 0,−f ) → (0, 0, 1)

• c = (n + f )/(n − f ); d = (2 n f )/(n − f )

• D3D convention: Solve for (0, 0, n) → (0, 0, 0); (0, 0, f ) → (0, 0, 1)
• c = f /(n − f ); d = n f /(f − n)
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