
Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

3D Transformations

CMSC 435/634



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Transformation

Webster: The operation of changing one configuration or expression into another in
accordance with a mathematical rule



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Using Transformation

• Points on object represented as vector offset from origin
• Transform is a vector to vector function

• p⃗′ = f (p⃗)

• Relativity:
• From p⃗′ point of view, object is transformed
• From p⃗ point of view, coordinate system changes

• Inverse transform, p⃗ = f −1(p⃗′)



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Composing Transforms

• Order matters
• R(T (p⃗)) = R ◦ T (p⃗)
• T (R(p⃗)) = T ◦ R(p⃗)



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Inverting Composed Transforms

• Reverse order
• (R ◦ T )−1(p⃗′) = T−1(R−1(p⃗′))
• (T ◦ R)−1(p⃗′) = R−1(T−1(p⃗′))



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Translation

• p⃗′ = p⃗ + t⃗

•

p′xp′y
p′z

 =

pxpy
pz

+

txty
tz

 =

px + tx
py + ty
pz + tz


• t⃗ says where p⃗-space origin ends up (p⃗′ = 0⃗ + t⃗)

• Composition: p⃗′ = (p⃗ + t⃗0) + t⃗1 = p⃗ + (t⃗0 + t⃗1)



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Linear Transforms

•

p′xp′y
p′z

 =

a b c
d e f
g h i

pxpy
pz


• Matrix says where p⃗-space axes end up

•

ad
g

 =

a b c
d e f
g h i

10
0


be
h

 =

a b c
d e f
g h i

01
0


cf
i

 =

a b c
d e f
g h i

00
1


• Composition: p⃗′ = M (N p⃗) = (M N)p⃗



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common case: Scaling

•

p′xp′y
p′z

 =

sx px
sy py
sz pz

 =

sx 0 0
0 sy 0
0 0 sz

pxpy
pz


• Inverse:

1/sx 0 0
0 1/sy 0
0 0 1/sz





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common case: Reflection

• Negative scaling

•

p′xp′y
p′z

 =

−px
py
pz

 =

−1 0 0
0 1 0
0 0 1

pxpy
pz





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

X

Y

Z

• Rotate around Z: p⃗′ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 p⃗

• Orthogonal, so M−1 = MT



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

Y

Z

X

• Rotate around X: p⃗′ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 p⃗

• Orthogonal, so M−1 = MT



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common case: Rotation

cos θ

cos θ

sin θ

-sin θ

θ

θ

Z

X

Y

• Rotate around Y: p⃗′ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 p⃗

• Orthogonal, so M−1 = MT



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Composing Transforms

• Scale by s along axis â
• Rotate to align â with Z
• Scale along Z
• Rotate back



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Rotate by α around X into XZ plane

X

Y

Z

• Projection of â onto YZ: −→ayz =

 0
ay
az


• length d =

√
(ay )2 + (az)2

• So cosα = az/d , sinα = ay/d

• RX =

1 0 0
0 az/d −ay/d
0 ay/d az/d


• Result â′ =

ax0
d





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Rotate by -β around Y to Z axis

X

Y

Z

• â′ =

ax0
d


• length = 1

• So cosβ = d , sinβ = ax

• RY =

 d 0 −ax
0 1 0
ax 0 d


• Result â′′ =

00
1





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Composing Transforms

• Scale by s along Z: SZ =

1 0 0
0 1 0
0 0 s


• Scale by s along axis â

• Rotate to align â with XZ plane
• Rotate to align â with Z axis
• Scale along Z
• Undo Z-axis alignment rotation
• Undo XZ-plane alignment rotation
• p⃗′ = R−1

X R−1
Y SZRYRX p⃗



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Affine Transforms

• Affine = Linear + Translation

• Composition? A (B p⃗ + t⃗0) + t⃗1 = A B p⃗ + A t⃗0 + t⃗1
• Yuck!



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Homogeneous Coordinates

• Add a ’1’ to each point

•


p′x
p′y
p′z
1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



px
py
pz
1


• p⃗′x = (a px + b py + c pz) + tx

• p⃗′y = (d px + e py + f pz) + ty

• p⃗′z = (g px + h py + i pz) + tz
• 1 = (0px + 0py + 0pz) + 1



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Homogeneous Coordinates

•


p′x
p′y
p′z
1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



px
py
pz
1


• p⃗′ =

[
x⃗ y⃗ z⃗ t⃗

]
p⃗

• t⃗ says where the p⃗-space origin ends up
• x⃗ , y⃗ , z⃗ say where the p⃗-space axes end up

• Composition: Just matrix multiplies!



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Composing Transforms

• Rotate by θ about line between p⃗0 and p⃗1:
• Translate p⃗0 to origin
• Rotate to align p⃗1 − p⃗0 with Z
• Rotate by θ around Z
• Undo p⃗1 − p⃗0 rotation
• Undo translation

• T−1R−1
X R−1

Y RZ (θ)RYRXT



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Vectors

• Transform by Jacobian Matrix
• Matrix of partial derivatives

•


x ′

y ′

z ′

1

 =


a b c tx
d e f ty
g h i tz
0 0 0 1



x
y
z
1

 →

x ′y ′

z ′

 =

a x + b y + c z + tx
d x + e y + f z + ty
g x + h y + i z + tz


• J =

∂x ′/∂x ∂x ′/∂y ∂x ′/∂z
∂y ′/∂x ∂y ′/∂y ∂y ′/∂z
∂z ′/∂x ∂z ′/∂y ∂z ′/∂z

 =

a b c
d e f
g h i


• Use upper-left 3x3, or 0 for final coordinate:

•

a b c
d e f
g h i

xy
z

 or


a b c tx
d e f ty
g h i tz
0 0 0 1



x
y
z
0





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Normals

• Normal should remain perpendicular to tangent vectors

• n⃗ · v⃗ = n⃗′ · v⃗ ′ = 0

•
[
nx ny nz

] vxvy
vz

 =
([
nx ny nz

]
J−1

)J

vxvy
vz

 = 0

• n⃗′ = n⃗J−1

• Multiply by inverse on right
• OR multiply column normal by inverse transpose

• n⃗′ = (J−1)T n⃗
• (J−1)T = J if J is orthogonal (only rotations)



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Coordinate System / Space

• Origin + Axes

• Reference frame

• Convert by matrix
• OpenGL convention (we use this!): Points are columns

• p⃗table = TableFromPencil p⃗pencil
• p⃗room = RoomFromTable TableFromPencil p⃗pencil
• p⃗room = RoomFromPencil p⃗pencil

• Same thing in D3D convention (Points are rows, everything transposed)
• p⃗table = p⃗pencil PencilToTable
• p⃗room = p⃗pencil PencilToTable TableToRoom
• p⃗room = p⃗pencil PencilToRoom



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Nesting

Room

Desk

Student Book Notebook

Desk

Student Notebook

Podium

Laptop

Board

Eraser



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Matrix Stack

• Remember transformation, return to it later

• Push a copy, modify the copy, pop

• Keep matrix and update matrix and inverse

• Push and pop both matrix and inverse together

code stack (start with Identity)
transform(WorldFromRoom); WfR
push; WfR WfR
transform(RoomFromDesk); WfD WfR
push; WfD WfD WfR
transform(DeskFromStudent); WfS WfD WfR
pop; WfD WfR
push; WfD WfD WfR
transform(DeskFromBook); WfB WfD WfR
...



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Common Spaces

• Object / Model
• Logical coordinates for modeling
• May have several more levels

• World
• Common coordinates for everything

• View / Camera / Eye
• eye/camera at (0, 0, 0), looking down Z (or -Z) axis
• planes: left, right, top, bottom, near/hither, far/yon

• Normalized Device Coordinates (NDC) / Clip
• Visible portion of scene from (−1,−1,−1) to (1, 1, 1)
• Sometimes 0 to 1 (D3D uses (−1,−1, 0) to (1, 1, 1))

• Raster / Pixel / Viewport
• 0, 0 to x-resolution, y-resolution

• Device / Screen
• May translate or scale to fit actual screen



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

WorldFromModel / ViewFromModel

• WorldFromModel
• All shading and rendering in World space
• Transform all objects and lights

• ViewFromModel
• World can be any common space, might as well use View space
• Serves just as well for single view
• Old OpenGL used to have a MODELVIEW transform built in

• Ray tracing implicitly does World → Raster



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

World Coordinate Precision

• Floating point precision is not enough for large worlds
• Float precision of x is (next lower power of 2) * 2−23 ≈ x ∗ 10−7

• Earth radius 6.378 ∗ 106m; UMBC at 39.2498◦N, 76.7115◦W
• ∴ X = 1.135 ∗ 106m;Y = 4.807 ∗ 106m;Z = 4.035 ∗ 106m
• Position resolution: X ± 0.125m;Y ± 0.5m;Z ± 0.25m

• Use doubles ... or recenter world space
• UnrealEngine: Translated World or Large World Coordinates (LWC)
• Translated World: origin at camera since floating point precision is better near origin

• Errors are farther away where they’re harder to see

• LWC: include a tile translation exactly representable as float (0’s in least significant
bits) and float world positions relative to tile.

• Only need to worry about this for huge worlds



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

ViewFromWorld

• Also called Viewing or Camera transform
• LookAt

• −−→
from,

−→
to ,−→up

• ŵ = normalize(
−→
to −

−−→
from); û = normalize(ŵ ×−→up); v̂ = û × ŵ

•
[
û v̂ ŵ

−−→
from

]
• Roll / Pitch / Yaw (use without roll for FPS)

• Translate to camera center, rotate around camera
• Rz Rx Ry T
• Can have gimbal lock when first and last axes align

• Orbit
• Rotate around object center, translate out
• T Rz Rx Ry

• Also can have gimbal lock



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

NDCFromView

• Also called Projection transform
• Orthographic / Parallel

• Translate & Scale to view volume

•


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f − n+f

n−f

0 0 0 1


• Perspective

• More complicated...



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

RasterFromNDC

• Also called Viewport transform

• [−1, 1], [−1, 1], [−1, 1] → [0, nx ], [0, ny ], [0, nz ]

• or → [−1
2 , nx −

1
2 ], [−

1
2 , ny −

1
2 ], [−

1
2 , nz −

1
2 ]

• Translate by (1, 1, 1): (−1,−1,−1) → (0, 0, 0); (1, 1, 1) → (2, 2, 2)
• Scale by (nx/2, ny/2, nz/2): (2, 2, 2) → (nx , ny , nz)
• (if needed) Translate by (− 1

2 ,−
1
2 ,−

1
2 ) — puts pixel centers at integer coordinates

nx
2 0 0 nx

2
0

ny
2 0

ny
2

0 0 nz
2

nz
2

0 0 0 1

 or


nx
2 0 0 nx−1

2

0
ny
2 0

ny−1
2

0 0 nz
2

nz−1
2

0 0 0 1





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

ScreenFromRaster

• Usually just a translation
• Some game consoles include scaling for performance
• More complicated for tiled displays, domes, etc.

• Usually handled by windowing system



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Perspective View Frustum

• Orthographic view volume is a rectangular volume

• Perspective is a truncated pyramid or frustum

near / hither

far / yon

rightleft

bottom

top

near / hither

far / yon

right
left

bottom

top

eye



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Perspective Transform

• Ray tracing
• Given screen (sx , sy ), parameterize all points p⃗

• Perspective Transform
• Given p⃗, find (sx , sy )
• Use similar triangles
• sy/d = py/pz So sy = d py/pz



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Homogeneous Equations

• Same total degree for every term

• Introduce a new redundant variable
• Plane equation

• aX + bY + c = 0
• X = x/w ,Y = y/w
• a x/w + b y/w + c = 0
• → a x + b y + cw = 0

• Quadric
• aX 2 + bX Y + cY 2 + dX + eY + f = 0
• X = x/w ,Y = y/w
• a x2/w2 + b x y/w2 + c y2/w2 + d x/w + e y/w + f = 0
• → a x2 + b x y + c y2 + d x w + e y w + f w2 = 0



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Homogeneous Coordinates

• Rather than (x , y , z , 1), use (x , y , z ,w)

• Real 3D point is (X ,Y ,Z ) = (x/w , y/w , z/w)

• Can represent Perspective Transform as 4x4 matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0



px
py
pz
1

 =


px
py
pz

pz/d

 →

d px/pz
d py/pz

d





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Homogeneous Depth
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0



px
py
pz
1

 =


px
py
pz

pz/d

 →

d px/pz
d py/pz

d


• Lose depth information
• Can’t get d p′z/pz = pz

• Plus x/z , y/z , z isn’t linear

• Use Projective Geometry



Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Projective Geometry

• If (x , y , z) lie on a plane, (x/z , y/z , 1/z) also lie on a plane

• 1/z is strictly ordered: if z1 < z2, then 1/z1 > 1/z2
• New matrix: 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



px
py
pz
1

 =


px
py
1
pz

 →

px/pzpy/pz
1/pz





Generic Transforms Common Transforms Composing Transforms Affine Transforms Vectors and Normals Spaces Perspective

Getting Fancy

• Tuning transform output
• Field of view (x/y scale)
• Near/far range (z scale and translate)

a 0 0 0
0 b 0 0
0 0 c d
0 0 −1 0



px
py
pz
1

 =


a px
b py

c pz + d
−pz

 →

 −a px/pz
−b py/pz
−c − d/pz


• b = 1/tan(yfov/2); a = 1/tan(xfov/2) = b ∗ height/width;
• OpenGL convention: Solve for (0, 0,−n) → (0, 0,−1); (0, 0,−f ) → (0, 0, 1)

• c = (n + f )/(n − f ); d = (2 n f )/(n − f )

• D3D convention: Solve for (0, 0, n) → (0, 0, 0); (0, 0, f ) → (0, 0, 1)
• c = f /(n − f ); d = n f /(f − n)


	Generic Transforms
	Common Transforms
	Composing Transforms
	Affine Transforms
	Vectors and Normals
	Spaces
	Perspective

