Text Mining with Information—Theoretical Clustering

Jacob Kogan'
kogan@umbc.edu
Department of Mathematics and Statistics
UMBC, Baltimore, MD 21250
Charles Nicholas
nicholas@umbc.edu
Department of Computer Science and Electrical Engineering
UMBC, Baltimore, MD 21250
and
Vladimir Volkovich
zeev@actcom.co.il
Software Engineering Department
ORT Braude Academic College
Karmiel 21982, Israel

Version #2
May 6, 2003

Abstract

Hybrid information retrieval (IR) algorithms combine different normalization techniques
and similarity functions. Hybrid algorithms provide an efficient technique to improve pre-
cision and recall (see [3]). Motivated by the success of hybrid IR algorithms we report a
hybrid clustering scheme based on algorithms introduced recently in [5] and [7]. We report
experiments with data in a vector space or bag of words model [2] of dimension 4000. Appli-
cation of a feature selection technique described in [5] leads to 85% reduction in dimension
of the vector space model. Applications of the reported clustering scheme to the data in
the “reduced” vector space model outperforms a number of existing clustering algorithms.
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1 Introduction

A wide variety of clustering algorithms applicable for objects of general nature are already avail-
able in the literature (see e.g., [8]). The classical k—means algorithm is probably the most
celebrated and widely used general clustering technique. In a number of application, including
Text Mining and Information Retrieval, one is interested in clustering sets of normalized vectors.
In this paper we suggest a two step clustering procedure that handles unit norm vectors. One of
these steps is based on the k—means clustering algorithm.

It is known that the quality of the final partition generated by k-means type clustering
algorithms depends on a good choice of the initial partition (see e.g., [5], [4]). The first step of
the proposed procedure is the Spherical Principal Directions Partitioning (sPDDP) introduced
recently by [5]. This singular value decomposition (SVD) based algorithm clusters [ unit vectors
and generates “good” initial partitions for the second step of the procedure.

The second step is a modification of a new information-theoretic clustering algorithm recently
suggested by [7]. The new algorithm uses the Kullback—Leibler (KL) divergence as a similarity
measure between two unit /; vectors with non—negative coordinates (for the details we refer the
reader to [7]). The algorithm resembles the classical batch k-means algorithm [8], and suffers
from similar deficiencies. A modification of the algorithm that remedies some of the deficiencies
is proposed in this paper. We shall call the proposed modification the Kullback—Leibler means
algorithm, or KL-means.

The outline of the paper is the following. A brief description of the Spherical Principal
Directions Partitioning algorithm is provided in Section 2. In Section 3 we describe two clustering
algorithms. The first one is the information—theoretic clustering algorithm introduced in [7], and
the second one is the KLL-means algorithm which combines algorithms introduced independently
by [7] and [1]. In Section 4 we describe the data, preprocessing, and relevant results already

available in the literature. Section 5 contains results of numerical experiments.

2 Spherical Principal Directions Divisive Partitioning

In this section we briefly describe the singular value decomposition based algorithm. The algo-
rithm approximates a finite set of unit norm vectors X C R" by a one dimensional great circle of
the unit sphere S”~1. A great circle is represented by an intersection of S"~! and a two dimen-
sional subspace P of R". The two dimensional approximation is easy to visualize (see Section

5). The proposed algorithm is the following:

Algorithm 2.1 The Spherical Principal Directions Divisive Partitioning (sPDDP) clustering

algorithm.



1. Given a set of unit vectors X in R"™ determine the two dimensional plane P that approxi-

mates X in the “best possible way”.

2. Project X onto P. Denote the projection of the set X by Y, and the projection of a vector
x byy (note that'y is two dimensional).

3. Ify #0 “push”y € Y to the great circle, and denote the corresponding vector by z = ”y_”
Denote the constructed set by Z. Y
4. Partition Z into two clusters Z, and Zy. Assign projections'y with ||y|| = 0 to Z;.
5. Generate the induced partition {X1,Xs} of X as follows:
Xi={x:2z€Z}, andXo={x : z€ Zy}. (1)

For technical details concerning sPDDP we refer the reader to [5].

3 Information-theoretic clustering

The method described below follows the ideas introduced by [12]: “Given the empirical joint
distribution of two variables, one variable is compressed so that the mutual information about
another variable is preserved as much as possible. The method can be considered as finding a
minimal sufficient partition or efficient relevant coding of one variable with respect to the other
one.”

Specifically, let Y be a discrete random variable that takes values from theset Y = {y1,...,Ym},
and let X be a discrete random variable that takes values from the set X = {z1,...,2z,} (in Text
Mining applications X may denote documents, or phrases in a document collection, Y may de-
note words, or terms in the document collection). Let IIy = {my,...,m}, £ < n, be a partition
of X. The information about Y captured by II; can be measured by the mutual information
I(Y,1I;), where the mutual information I(Y, X) between two random variables Y and X with

probability distributions p(y) and p(z), and the joint probability distribution p(y, z) is given by

1Y, X) =) ply,2) 10g}%-

The inequality
I(Y,I1,) — I(Y,1I;) > 0 (2)

always holds (for details see [7]). We define the quality of a cluster = by

q () = p(@)KL(p(Y]z),p(Y|r)).
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Here the relative entropy, or Kullback-Leibler divergence [10] between two probability distribu-
tions p(z) and ¢(zx) is defined as K L(p, q Z p(z) log IM, and the probability distribution

q(z)

p(Y|m) is given by

(V) = ngﬁi (¥[x) where p(r) = 3 p(z) ®)

TET TET

The quality of the partition Il is given by
k
=2 q(m)= > Y p@)KL(p(Yl|z),p(Y|r)) = I(Y,1L,) — I(Y, ). (4)
j=1 well, zET

The optimal partition II¢ is the one that minimizes (4). The k—means type clustering framework
for building I was introduced independently by [1] and [7]. The iterative process for the batch
KL-means proposed in [7] is the following: Let Iy = {m,...,m} be a partition of X. For
x € m; C X denote by min(z) the index j of the cluster with the “nearest” probability distribution
ie.,

KL(p(Y [2), p(Y [asa(o))) < KLY l2),p(Y[m), 1= 1, k.

Define the “next Batch Kullback-Leibler Means” partition ITj = nextBKLM (II) as follows

My = {m},...,m}, m; = {z : j=min(z)}.
The algorithm reported in [7] is given next.

Algorithm 3.1 Batch Kullback-Leibler means algorithm.

Given a user supplied tolerance tol < 0 do the following:

1. Sett=0.

2. Start with an arbitrary partitioning 11t = {wf, e ,w,i}.

3. Generate the partition nextBKLM (II}).

4. If (Q (nextBKLM (IT})) — Q (IIx) < tol)
set TILT = nextBKLM (I1%)
increment t by 1

go to Step 3.
5. Stop.

It is shown in [7] that Algorithm 3.1 outperforms the agglomerative algorithms given in [12].
The classical batch k—means algorithm is prone to local minima [8]. In Section 5 we show

that the presented information—theoretical version of the algorithm experiences the same problem.

Next we list the reasons that may cause the algorithm to get trapped in a local minimum. Let

{m, 2} be a two cluster partition. Assume that z; € 7.
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1. The decision whether z; should be removed from the cluster m; and assigned to the cluster

my made by Algorithm 3.1 is based on the sign of
A = p(a1) [KL(p(Y |21), p(Y|m2)) — KL(p(Y |21), p(Y|m1))] (5)

The variable x; should be moved to m, if and only if A > 0.

To compute the change Agy.e in the value of the objective function Q caused by removal

of z; from 7 and assigning it to my we need an additional definition.

Definition 3.1 For # C X, and z1 € 7, we denote 1 — {z1} by 7~ (x1). For m C X, and
z1 & m, we denote T U{z1} by 7 (x1). When it does not lead to ambiguity we shall abuse

notations and denote the sets 7 (x1) and 77 (x1) just by 7~ and 7% respectively.

The change in the value of the objective function Q caused by removal of x; from m; and

assigning it to my is

Aexact = Z p Y|‘T) Y|7T1 Z p Y‘SE‘) (Y‘ﬂ-l))
TET TET

+ 2 p(@)KL(p(Y|z),p(YIrs)) = 3 p(z) KL(p(Y]x), p(Y]m2))
TET2 TET2

+ plr) [KL(p(lel),p(Ylﬁ)) - KL(p(Y\frl),p(Ylm))] :

In the next paragraph we will need the following “convexity” inequality
n n n
> «;KL(pi,q) > > oKL (pi,zaipi> (6)
i=1 i=1 i=1
that holds for a set of probability distributions p,...,p,,q¢ and non-negative weights
o1, ... 0, Y ;=1 (see [7] for details).

i=1

The difference

Aexacs —A =3 p(a) [KL(p(C|z),p(C|77)) — KL(p(C|z), p(C|m))]

mel

+ Yol ) [KL(p(Y |2), p(Y|75)) = KL(p(Y |2), p(Y |72))] -

zery

Due to (6) both terms on the right hand side are non-positive, and one has
A 2 Aexauct- (7)

It is, therefore, possible that while A > 0, and the batch k—means stops, a change of

cluster affiliation for z; decreases the value of the objective function. While the magnitude
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of Aexact — A is usually very small for large clusters, it becomes significant when the clusters
are small (see [9], [4] where the problem is analyzed in detail and a remedy is suggested
for the classical quadratic and the “spherical” versions of the k—means algorithm). It is
shown in [4] that the modification leads to a significant improvement of clustering results
in the case of small clusters (up to 100 vectors per cluster).

2. The following scenario is an additional reason for a possible “failure” of the algorithm:
Suppose that a document vector x; contains 10 first document collection terms only. That
is, the probability distribution (p(y1|1), ..., p(ym|@1))" has 10 first nonzero entries only,
ie.,

p(yilz1) >0, i =1,...,10, and p(yj|z:) =0, j =11,...,m.

Suppose also that no document in cluster 7, contains the first term of zy, i.e.,
p(y1]z) = 0 for each x € my, and, due to (3), p(yi|me) = 0.

In such a case KL (p(Y|x1),p(Y]|m)) = oo, and Algorithm 3.1 does not move z; from 7,
to mo. If, however, the only document in 7; containing any of the 10 words of z; is z;
itself (i.e., p(yilz) = 0,7 =1,...,10, z € m, and = # x7), and the last 9 words of z;
are contained in documents of m (i.e., p(y;|m2) > 0, j = 2,...,10), then, in these writers’
opinion, 7y is a more appropriate host cluster for z; than 7 is. (See also [11] for discussion

of the Kullback-Leibler divergence and its applications to Information Retrieval problems).

The incremental version of the Kullback-Leibler means algorithm has the ability to rectify the

drawbacks listed above. To present the algorithm we need additional definitions.

Definition 3.2 A first variation of a partition I1, = {Wl}le is a partition I1), = {ﬁ{}le obtained
from {W,}le by removing a single vector x from a cluster m; of {m}f:l and assigning this vector

to an existing cluster m; of {m};_,.

Next we look for the “steepest descent” first variation, i.e., a first variation that leads to the
maximal decrease in the objective function. The formal definition follows:

Definition 3.3 The partition nextFV (Ily) is a first variation of Iy so that for each first variation
[T}, one has Q (nextFV (II)) < Q (I1}) .

The algorithm presented next is a slight modification of the one described in [1].

Algorithm 3.2 Incremental Kullback-Leibler means algorithm.

Given a user supplied tolerance tol < 0 do the following:

1. Sett =0.



2. Start with an arbitrary partitioning 11; = {wf, . ,w,tc}.

3. Generate nextFV (Il).

4. If ( Q (nextFV (I1;)) — Q (I1;) < tol)
set TILH! = nextFV (II%)
increment t by 1

go to Step 3.
5. Stop.

Excellent clustering results for a small data set (a data matrix of size 197 x 203) are reported
in [1]. While computationally more accurate, Algorithm 3.2 is slower than Algorithm 3.1. Each
iteration of the incremental algorithm changes cluster affiliation of a single vector only. The
computational complexity of the Algorithm 3.2 is shown to be the same as that of Algorithm 3.1
(see [1], where generation of first variation partitions and associated computations are described).

We next describe an algorithm that benefits from the speed of Algorithm 3.1 and the accuracy
of Algorithm 3.2.

Algorithm 3.3 KL-means clustering algorithm.

Given user supplied tolerances tolg < 0 and tol; <0

1. Sett=0.

2. Start with an arbitrary partitioning 11}, = {ﬁ, e ,W,i}.

3. while (Q (nextBKLM (I1%)) — Q (T1%) < tols)
set TIT' = nextBKLM (TT})

increment t by 1

4 If (Q (nextFV (II})) — Q(II}) < tols)
set TILH = nextFV (I1%)
increment t by 1

go to Step 3.
5. Stop.

In the next section we present the clustering results already available in the literature, and

describe the hybrid clustering procedure which is the main contribution of this paper.



4 Text data and vector space model

Dhillon and Modha [6] have recently used the spherical k—means algorithm for clustering text
data. In one of their experiments the algorithm was applied to a data set containing 3893
documents [6]. The data set contains the following three document collections (available from
ftp://ftp.cs.cornell.edu/pub/smart):

e Medlars Collection (1033 medical abstracts),
e CISI Collection (1460 information science abstracts),
e Cranfield Collection (1400 aerodynamics abstracts).

Partitioning the entire collection into 3 clusters generates the “confusion” matrix reported in

Table 1 (see [6]). The entry ij in the Table 1 is the number of documents that belong to cluster i

Medlars | CISI | Cranfield
cluster 0 1004 5 4
cluster 1 18 | 1440 16
cluster 2 11 15 1380

Table 1: spherical k-means generated “confusion” matrix with 69 “misclassified” documents
using 4099 terms

and document collection j. The “confusion” matrix shows that only 69 documents (i.e., less that
2% of the entire collection) have been “misclassified” by the algorithm. After removing stopwords
Dhillon and Modha [6] reported 24,574 unique words, and after eliminating low—frequency and
high—frequency words they selected 4,099 words to construct the vector space model.

Our data set is a merger of the three document collections:

e DCO (Medlars Collection 1033 medical abstracts)
e DC1 (CISI Collection 1460 information science abstracts)

e DC2 (Cranfield Collection 1398 aerodynamics abstracts)

(the documents are available from http://www.cs.utk.edu/"1si/). The Cranfield collection
tackled by Dhillon and Modha contained two empty documents. These two documents have been
removed from DC2. The other document collections are identical.

We denote the overall collection of 3891 documents by DC. After stopword removal (see
ftp://ftp.cs.cornell.edu/pub/smart/english.stop), and Porter stemming the data set con-

tains 15,864 unique terms. (No stemming was applied to the 24,574 unique words reported in

[6])-



To exploit statistics of term occurrence throughout the corpus we remove terms that occur in
less than r sentences across the collection, and denote the remaining terms by slice(r). (Although
r should be collection dependent, the experiments in this chapter are performed with r = 20).
The first [ best quality terms that belong to slice(r) define the dimension of the vector space
model.

We denote the frequency of a term t in the document d; by f;. Following an approach

outlined in [5] we measure the quality of the term t by
2
SN oy (8
jzzl f] n() j:1 J bl

where ng is the total number of documents in the collection. Note that the quality of a term is
proportional to the term frequency variance.

To evaluate the impact of feature selection based on the quality function (8) on clustering
we conducted the following experiment. The best quality 600 terms are selected, and Il unit
norm vectors for the 3891 documents are built (we use the tfn scheme to construct document
vectors, for details see [6]). A two step procedure is employed to partition the 3891 vectors into

3 clusters:

1. the sSPDDP algorithm (see Section 2) is applied to generate 3 clusters (the obtained clusters

are used as an initial partition in the next step),

2. the vectors are normalized in /; norm, and the KM-means algorithm (see Section 3) is

applied to the partition obtained in the previous step.

The results of the experiment with tols = tol; = 0 are provided in the next section.

5 Clustering results

In what follows we display clustering results for the document collection DC described in Section 4
and compare the results with those reported by [6] and [5]. An application of SPDDP to the
entire data set generates the first two clusters (see Figure 1, where two dimensional projections
of Medlars, CISI and Cranfield document vectors are denoted by red ‘*’, green ‘o’, and blue
‘+’ respectively). Projections of the clusters on the two dimensional plane P (the left part of
Figure 1) are “pushed” to the unit circle (see Algorithm 2.1) and partitioned into two clusters (see
the right part of Figure 1). The black solid line indicates the partition of the points on the unit
circle. To illustrate the induced partition of the two dimensional projections we also show this
line on the left part of the figure. One can clearly identify three clusters, and the first application
of sSPDDP separates one cluster from the other two. The second application of sPDDP to the
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Figure 1: sPDDP generated two cluster partition of the entire data set

largest cluster generated by the first application recomputes the plane P and splits the cluster
(see Figure 2). The confusion matrix for the three cluster partition generated by sPDDP is

PARTITION 2, LARGEST CLUSTER, 2D PROJECTION PARTITION 2, LARGEST CLUSTER, GREAT CIRCLE APPROXIMATION
T T T T T T T T T T T T T T T T

4 1k *4 b

Figure 2: sPDDP generated two cluster partition of the largest cluster

given in Table 2 below. Note that there is no a prior: connection between document collection
1 and cluster . Hence, one can not expect the “confusion” matrix to have diagonal structure
unless rows (or columns) of the matrix are suitably permuted. A good clustering procedure
should be able to produce a “confusion” matrix with a single “dominant” entry in each row. The
“confusion” matrices for the three clusters provided in Tables 2 and 3 illustrate this remark.

When the number of terms is relatively small, some documents may contain no selected terms,
and their corresponding vectors are zeros. We always remove these vectors ahead of clustering
and assign the “empty” documents into a special cluster. This cluster is the last row in the
“confusion” matrix (and is empty in the experiment reported in Tables 2 and 3).

While the number of selected terms is only 600 (i.e., only about 15% of the number of terms
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| | DCO| DC1| DC2 |

cluster 0 1000 3 1
cluster 1 8 10 | 1376
cluster 2 25 | 1447 21
“empty” documents

cluster 3 0 0 0

Table 2: sPDDP generated initial “confusion” matrix with 68 “misclassified” documents using
best 600 terms

reported in [6]) the quality of SPDDP generated confusion matrix is comparable with that of
the confusion matrix generated by the spherical k-means algorithm (see Table 1). A subsequent
application of the KL-means algorithm to the partition generated by sPDDP further improves

the confusion matrix (see Table 3).

| | DCO| DC1| DC2 |

cluster 0 1010 6 0
cluster 1 3 4| 1387
cluster 2 20 | 1450 11
“empty” documents

cluster 3 0 0 0

Table 3: KL-means generated final “confusion” matrix with 44 “misclassified” documents using
best 600 terms

We pause briefly to analyze performance of the KL-means algorithm. In the experiment described

above the algorithm performs 30 iterations.
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The left figure shows the values of Q (II%), ¢ = 0,1,...,30. The solid line shows changes in the
objective function caused by batch KL-means iterations, and the dotted line does the same for
incremental KL-means iterations. The figure shows that the lion’s share of the work is done by
the first 3 batch KL-means iterations. From iteration 4 to iteration 16 values of the objective
function drop due to incremental KL-means iterations only. At iterations 17, 18 and 19 the batch
KL-means kicks in. For the rest of the run the objective function changes are due to incremental
KL-means iterations only.

The right figure shows the drop of the objective function values per number of vectors reshuf-
fled between clusters due to an iteration (we shall call it a “relative drop”, and when no vector
changes its cluster affiliation we report relative drop 0). Stars indicate relative drop due to batch
KL-means iterations, and circles show relative drop due to incremental KL-means iterations. We
observe that the relative drop due to batch KL-means becomes 0 at iteration 3, and the maximal
relative drop occurs at iteration 4 due to an incremental KL-means iteration. An inspection
reveals that at this iteration a vector x was moved from cluster 73 to cluster m, and x was

“missed” by the batch KL-means iteration 3 because
KL(p(Y|z), p(Y|m1)) = oo, and KL(p(Y|z),p(Y|m2)) = oo.
For the very same reason vectors were “missed” by the batch KL-means algorithm at iterations
5 and 19.
Table 4 summarizes clustering results for sSPDDP algorithm and the combinations “sPDDP+£—

means”, and “sPDDP+ KL-means” algorithms for different choices of index terms. Note that

zero document vectors are created when the number of selected terms is less than 300. Table 4

| | | documents misclassified by sSPDDP |
H # of terms ‘ zero vectors ‘ alone ‘ and k-means ‘ and KL-means H

100 12 383 258 168
200 3 277 133 116
300 0 228 100 81
400 0 38 80 26
200 0 76 62 40
600 0 68 62 44

Table 4: Number of documents “misclassified” by sPDDP, “sPDDP+k-means”, and “sPDDP+
KL-means”.

indicates consistent superiority of the “sPDDP+ KL-means” algorithm.

Acknowledgments. The authors thank Jim X. Chen and Penny Rheingans for valuable sug-
gestions that improved exposition of the results. The work of Kogan and Nicholas was supported
in part by the US Department of Defense.

11



References

[1] P. Berkhin and Becher J. D. Learning simple relations: Theory and applications. In Proc.
Second SIAM International Conference on Data Mining, pages 420-436, Arlington, April
2002.

[2] M. Berry and M. Browne. Understanding Search Engines. STAM, 1999.

[3] M. Cornelson, E. Greengrass, R. L. Grossman, R. Karidi, and D. Shnidman. Combining
information retrieval algorithms using machine learning. In Proceedings of the SIAM KDD

Workshop on Text Mining, to appear.

[4] L. S. Dhillon, Y. Guan, and J. Kogan. Refining clusters in high-dimensional text data. In I. S.
Dhillon and J. Kogan, editors, Proceedings of the Workshop on Clustering High Dimensional
Data and its Applications at the Second SIAM International Conference on Data Mining,

pages 71-82. STAM, 2002.

[5] L. S. Dhillon, J. Kogan, and C. Nicholas. Feature selection and document clustering. In M.W.
Berry, editor, A Comprehensive Survey of Text Mining. Springer-Verlag, 2003, to appear.

[6] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using
clustering. Machine Learning, 42(1):143-175, January 2001. Also appears as IBM Research
Report RJ 10147, July 1999.

[7] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar. Enhanced word clustering for
hierarchical text classification. In Proceedings of the The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining(KDD-2002), pages 191-200, 2002.

[8] R. O.Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons, second
edition, 2000.

[9] J. Kogan. Means clustering for text data. In M.W.Berry, editor, Proceedings of the Workshop
on Text Mining at the First SIAM International Conference on Data Mining, pages 47-54,
2001.

[10] S. Kullback and Leibler R.A. On information and sufficiency. Journal of Mathematical
Analysis and Applications, 22:79-86, 1951.

[11] M. Larkey, L. Connell and J. Callan. Collection selection and results merging with topically
organized U.S. patents and TREC data. In Proceedings of the 9th International Conference
on Information and Knowledge Management (CIKM), pages 282-289, McLean, VA, 2000.
ACM.

12



[12] N. Slonim and N. Tishby. The power of word clusters for text classification. In 23rd European
Colloguium on Information Retrieval Research (ECIR), Darmstadt, 2001.

13



