IR Models: The Vector Space Model

Lecture 7

Lecture 7

Information Retrieval

Boolean Model Disadvantages

Similarity function is boolean

Exact-match only, no partial matches
Retrieved documents not ranked

All terms are equally important

Boolean operator usage has much more influence than a critical word

Query language is expressive but

complicated

Information Retrieval

The Vector Space Model

Cosine Similarity Measure

 $sim(d_i, q) = \cos\theta$

 $(x \cdot y = |x||y|\cos\theta)$

$$=\frac{d_i \cdot q}{|d_i||q|} = \frac{\sum_j w_{i,j} \times w_{q,j}}{\sqrt{\sum_j w_{i,j}^2} \sqrt{\sum_j w_{q,j}^2}}$$

- Cosine is a normalized dot product
 - Documents ranked by decreasing cosine value
 - sim(d,q) = 1 when d = q
 - sim(d,q) = 0 when d and q share no terms

Term Weighting

- Higher weight = greater impact on cosine
- Want to give more weight to the more "important" or useful terms
- What is an important term?
 - If we see it in a query, then its presence in a document means that the document is relevant to the query.
 - How can we model this?

Clustering Analogy

- Documents are collection of C objects
- Query is a vague description of a subset A of C
- IR problem: partition C into A and ~A
- We want to determine
 - which object features best describe members of A
 - which object features best differentiate A from ~A
- For documents,
 - frequency of a term in a document
 - frequency of a term across the collection

Term Frequency (tf) factor

Lecture 7

Information Retrieval

Inverse Document Frequency (idf) factor

A term's scarcity across the collection is a measure of its importance Zipf's law: term frequency ~ 1/rank importance is • inversely proportional to frequency of occurrence

N = # documents in coll $n_t = #$ documents \sim

 $idf_t = \log(1 + \frac{N}{m})$

 $idf_t = \log(\frac{N - n_t}{N})$

containing term t

8

 n_{t}

Lecture 7

Information Retrieval

tf-idf weighting

tf-idf Monotonicity

"A term that appears in many documents should *not* be regarded as *more important* than one that appears in few documents." "A document with many occurrences of a term should *not* be regarded as *less*

important than a document with few occurrences of the term."

Length Normalization

Why normalize by document length?

- Long documents have
 - Higher term frequencies: the same term appears more often

More terms: increases the number of matches between a document and a query

Long documents are more likely to be retrieved

The "cosine normalization" lessens the impact of long documents

VSM Example

d	Document vectors <tf<sub>d,t></tf<sub>													
	col	day	eat	hot	lot	nin	old	pea	por	pot				
1	1.0			1.0				1.7	1.7		2.78			
 2								1.0	1.0	1.0	1.73			
3		1.0				1.0	1.0				1.73			
 4	1.0			1.0						1.7	2.21			
5								1.7	1.7		2.40			
 6			1.0		1.0						1.41			
idf _t	1.39	1.95	1.95	1.39	1.95	1.95	1.95	1.1	1.1	1.39				
	\cdot q1 = eat													
 	$q_2 = porridge$													
	\cdot q3 = hot porridge													
 	• q4 = eat nine day old porridge													

Vector Space Model

- Advantages Disadvantages
- Ranked retrieval
 Terms are weighted
 Independent
 by importance
 Weighting is intuitive,
 Partial matches
 but not very formal

	Lect	ure 7								orm	atior	n Re	etriev	val					

Implementing VSM

$$sim(q,d) = \frac{1}{W_q W_d} \sum_t W_{q,t} \times W_{d,t}, W_d = \sqrt{\sum_t W_d^2}$$

- Need within-document frequencies in the inverted list
 - W_{α} is the same for all documents
 - $w_{q,t}$ and $w_{d,t}$ can be accumulated as we
 - process the inverted lists
 - W_d can be precomputed

Cosine algorithm

- A = {} (set of accumulators for documents)
- 2. For each query term t
 - Get term, f_t , and address of I_t from lexicon
 - \cdot set idf_t = log(1 + N/f_t)
 - Read inverted list I_t
 - For each <d, $f_{d,t}$ > in I_t
 - If $A_d \notin A$, initialize A_d to 0 and add it to A
 - $\cdot A_d = A_d + (1 + \log(f_{d,t})) \times idf_t$
- 3. For each A_d in A, $A_d = A_d/W_d$
- 4. Fetch and return top r documents to user

Managing Accumulators

- How to store accumulators?
 - static array, 1 per document
 - grow as needed with a hash table
- How many accumulators?
 - can impose a fixed limit
 - quit processing I's after limit reached
 - continue processing, but add no new A_d's

Managing Accumulators (2)

To make this work, we want to process the query terms in order of decreasing idf, Also want to process I_t in decreasing tf_{d,t} order sort I, when we read it in • or, store inverted lists in f_{dt}-sorted order <5; (1,2) (2,2) (3,5) (4,1) (5,2)> <*f*_t; (*d*, *f*_{dt})...> <5; (3,5) (1,2) (2,2) (5,2) (4,1)> sorted by f_{d,t} <5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <*f*_t; (*f*_d, *c*:*d*,...)...> This can actually compress better, but makes Boolean queries harder to process Lecture 7 Information Retrieval 17

Getting the top documents

Naïve: sort the accumulator set at end Or, use a heap and pull top r documents much faster if r << N Or better yet, as accumulators are processed to add the length norm (W_d) : make first r accumulators into a min-heap for each next accumulator if A_d < heap-min, just drop it if A_d > heap-min, drop the heap-min, and put A_d in