
Lecture 7 Information Retrieval 1

IR Models:
The Vector Space Model

Lecture 7

Lecture 7 Information Retrieval 2

Boolean Model Disadvantages

� Similarity function is boolean

� Exact-match only, no partial matches

� Retrieved documents not ranked

� All terms are equally important

� Boolean operator usage has much more
influence than a critical word

� Query language is expressive but
complicated

Lecture 7 Information Retrieval 3

The Vector Space Model

� Documents and queries are both vectors

� each wi,j is a weight for term j in document i

� "bag-of-words representation"

� Similarity of a document vector to a query
vector = cosine of the angle between
them

θ

Lecture 7 Information Retrieval 4

Cosine Similarity Measure

� Cosine is a normalized dot product

� Documents ranked by decreasing cosine value

� sim(d,q) = 1 when d = q

� sim(d,q) = 0 when d and q share no terms

Lecture 7 Information Retrieval 5

Term Weighting

� Higher weight = greater impact on cosine

� Want to give more weight to the more
"important" or useful terms

� What is an important term?

� If we see it in a query, then its presence in a
document means that the document is
relevant to the query.

� How can we model this?

Lecture 7 Information Retrieval 6

Clustering Analogy

� Documents are collection of C objects

� Query is a vague description of a subset A of C

� IR problem: partition C into A and ~A

� We want to determine

� which object features best describe members of A

� which object features best differentiate A from ~A

� For documents,

� frequency of a term in a document

� frequency of a term across the collection

Lecture 7 Information Retrieval 7

Term Frequency (tf) factor

� How well does a term describe its document?

� if a term t appears often in a document,
then a query containing t should retrieve that
document

� frequent (non-stop) words are thematic

� flow, boundary, pressure, layer, mach

Lecture 7 Information Retrieval 8

Inverse Document Frequency
(idf) factor

� A term’s scarcity
across the collection
is a measure of its
importance

� Zipf’s law: term
frequency ≈ 1/rank

� importance is
inversely proportional
to frequency of
occurrence

N = # documents in coll
nt = # documents

containing term t

Lecture 7 Information Retrieval 9

tf-idf weighting

� A weighting scheme where

wd,t = tfd,t x idft

is called a tf-idf scheme

� tf-idf weighting is the most common term
weighting approach for VSM retrieval

� There are many variations...

Lecture 7 Information Retrieval 10

tf-idf Monotonicity

� "A term that appears in many documents
should not be regarded as more
important than one that appears in few
documents."

� "A document with many occurrences of a
term should not be regarded as less
important than a document with few
occurrences of the term."

Lecture 7 Information Retrieval 11

Length Normalization

� Why normalize by document length?

� Long documents have

� Higher term frequencies: the same term appears
more often

� More terms: increases the number of matches
between a document and a query

� Long documents are more likely to be retrieved

� The "cosine normalization" lessens the impact
of long documents

VSM Example

1.391.11.11.951.951.951.391.951.951.39idft

1.411.01.06

2.401.71.75

2.211.71.01.04

1.731.01.01.03

1.731.01.01.02

2.781.71.71.01.01

potporpeaoldninlothoteatdaycol

WdDocument vectors <tfd,t>d

� q1 = eat

� q2 = porridge

� q3 = hot porridge

� q4 = eat nine day old porridge

Lecture 7 Information Retrieval 13

Vector Space Model

Advantages

� Ranked retrieval

� Terms are weighted
by importance

� Partial matches

Disadvantages

� Assumes terms are
independent

� Weighting is intuitive,
but not very formal

Lecture 7 Information Retrieval 14

Implementing VSM

� Need within-document frequencies in the
inverted list

� Wq is the same for all documents

� wq,t and wd,t can be accumulated as we
process the inverted lists

� Wd can be precomputed

Lecture 7 Information Retrieval 15

Cosine algorithm
1. A = {} (set of accumulators for documents)
2. For each query term t

� Get term, ft, and address of It from lexicon

� set idft = log(1 + N/ft)

� Read inverted list It

� For each <d, fd,t> in It

� If Ad ∉A, initialize Ad to 0 and add it to A

� Ad = Ad + (1 + log(fd,t)) x idft

3. For each Ad in A, Ad = Ad/Wd

4. Fetch and return top r documents to user

Lecture 7 Information Retrieval 16

Managing Accumulators

� How to store accumulators?

� static array, 1 per document

� grow as needed with a hash table

� How many accumulators?

� can impose a fixed limit

� quit processing It’s after limit reached

� continue processing, but add no new Ad’s

Lecture 7 Information Retrieval 17

Managing Accumulators (2)

� To make this work, we want to process the
query terms in order of decreasing idft

� Also want to process It in decreasing tfd,t order

� sort It when we read it in

� or, store inverted lists in fd,t-sorted order

<5; (1,2) (2,2) (3,5) (4,1) (5,2)> <ft ; (d, fd,t)…>

<5; (3,5) (1,2) (2,2) (5,2) (4,1)> sorted by fd,t

<5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <ft ; (fd,t , c:d,…)…>

� This can actually compress better, but makes
Boolean queries harder to process

Lecture 7 Information Retrieval 18

Getting the top documents

� Naïve: sort the accumulator set at end

� Or, use a heap and pull top r documents

� much faster if r << N

� Or better yet, as accumulators are processed to
add the length norm (Wd):

� make first r accumulators into a min-heap

� for each next accumulator

� if Ad < heap-min, just drop it

� if Ad > heap-min, drop the heap-min, and put Ad in

