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Abstract 
 

The volume and diversity of the data acquired in 
biomedical applications offer unique challenges to data 
mining researchers. The solutions that effectively turn 
data into information and knowledge will advance not 
only the field of data mining but also the understanding of 
the underlying science. This paper will present new 
computational challenges faced by designing methods for 
enabling genome-wide computing and potential 
approaches to tackles these challenges. A mouse 
reference population called Collaborative Cross is used 
as an example to illustrate computational difficulties in 
population-level genome-wide analysis. 
 
1. Background 
 

With the realization that a new model population was 
needed to understand human diseases with complex 
etiologies, a genetically diverse reference population of 
mice called Collaborative Cross (CC) was proposed. The 
CC is a large, novel panel of recombinant inbred (RI) 
lines that combines the genomes of genetically diverse 
founder strains to capture almost 90% of the known 
variation present in laboratory mice and that is designed 
specifically for complex trait analysis. It provides a 
translational tool to integrate gene functional studies into 
genetic networks using realistic population structures, 
which will be essential to understand the intricacies of 
biological processes such as disease susceptibility. In 
turn, CC becomes the focal point for cumulative and 
integrated data collection, giving rise to the detection of 
networks of functionally important relationships among 
diverse sets of biological and physiological phenotypes 
and a new view of the mammalian organism as a whole 
and interconnected system. It has the potential to support 
studies by the larger scientific community incorporating 
multiple genetic, environmental, and developmental 
variables into comprehensive statistical-supported models 
describing differential disease susceptibility and 
progression. Equally important, the CC is an ideal test 
bed for predictive, or more accurately, probabilistic 
biology, which will be essential for the deployment of 
personalized medicine.  
 

2. Research Issues in Data Mining 
 

The volume and diversity of the data collected in CC 
offers unique challenges, whose solutions will advance 
both our understanding of the underlying biology and the 
tools for computational analysis. For instance, it is 
commonplace to use clustering algorithms to search for 
patterns among homogeneous datasets, such as mRNA 
expression data. However, it is unclear how best to 
cluster, and thus find patterns within, multimodal 
datasets, such as those combining genomic, mRNA 
expression assays, and phenotypic measurements. Yet in 
their totality these measurements surely tell hidden stories 
about cause and effect, identify biomarkers, or predict 
clinical course and outcome. 
 
2.1. Analysis of High Dimensional Data 
 

It is widely recognized that noise and diversity are 
challenges when analyzing microarrays to discover those 
genes whose expression is modified by experimental 
conditions or when examining the genotypes of 
individuals raised in diverse environments to find the loci 
underlying complex traits. In both cases, exploratory, 
non-hypothesis driven, data analysis is a crucial first step. 

Clustering has been the most popular approach of 
analyzing gene expression data and has proven successful 
in many applications, such as discovering gene pathway, 
gene classification, and function prediction. There is a 
very large body of literature on clustering in general and 
on applying clustering techniques to gene expression data 
in particular. Several representative algorithmic 
techniques have been developed and experimented in 
clustering gene expression data, which include but are not 
limited to hierarchical clustering, self-organizing maps 
(Torkkola et al, 2001), and graphic theoretic approaches 
(e.g., CLICK (Sharan and Shamir, 2000)). These 
clustering methods seek full space clusters across all 
genes and all experiments. When applied to microarrays, 
they often produce a partition of genes that both precludes 
the assignment of genes to different clusters and fails to 
exclude irrelevant experiments. They are incapable of 
discovering gene expression patterns visible in only a 
subset of experimental conditions. In fact, it is common 
that a subset of genes are co-regulated and co-expressed 



under a subset of conditions, but tend to behave 
independently under other conditions. 

Recently, biclustering has been developed to uncover 
the local structures inside the gene expression matrix. 
Cheng and Church (2000) are among the pioneers in 
introducing this concept. Their biclusters are based on 
uniformity criteria, and they presented a greedy algorithm 
to discover them. Plaid (Lazzaroni, 2000) presented 
another model to capture the approximate uniformity in a 
submatrix in gene expression data and look for patterns 
where genes differ in their expression levels by a constant 
factor. Ben-Dor et al. (2001) discussed approaches to 
identify patterns in expression data that distinguish two 
subclasses of tissues on the basis of a supporting set of 
genes that results in high classification accuracy. Segal et 
al. (2001) described rich probabilistic models for relations 
between expressions, regulatory motifs and gene 
annotations. Its outcome can be interpreted as a collection 
of disjoint biclusters generated in a supervised manner. 
Tanay et al. (2002) defined a bicluster as a subset of 
genes that jointly respond across a subset of conditions, 
where a gene is termed responding under some condition 
if its expression level changes significantly under that 
condition with respect to its normal level. Ben-Dor et al. 
(2002) introduced the model of OPSM (order preserving 
submatrix) to discover a subset of genes identically 
ordered among a subset of conditions. It focuses on the 
coherence of the relative order of the conditions rather 
than the coherence of actual expression levels. For 
example, in the gene expression data of patients with the 
same disease, the genes interfering with the progression 
of this disease should behave similarly in terms of relative 
expression levels on this set of patients. These types of 
pattern can be observed in data from nominally identical 
exposure to environmental effects, data from drug 
treatment, and data representing some temporal 
progression, etc. One major drawback of this pioneering 
work is the strict order of the conditions enforced by the 
OPSM model.  

Biclustering is also referred to as subspace clustering 
or co-clustering in the field of computer science, which 
has two main branches.  One branch of subspace 
clustering algorithms divides both the set of objects and 
the set of attributes into disjoint partitions, where the 
partitions maximize global objective functions (Dhillon et 
al., 2003; Chakrabarti et al., 2004). Even though a 
globally optimal partition may be reached, the local 
properties of each cluster are hard to characterize. The 
other branch of subspace clustering algorithms eliminates 
the restriction of disjoint partitions by looking for clusters 
satisfying desired properties. These clustering algorithms 
are also called pattern-based algorithms. Unlike partition-
based algorithms that search for the best global partitions, 
pattern-based algorithms allow one object to be in 
multiple clusters in different subspaces. Several pattern-

based algorithms have been developed for different 
cluster properties. A commonly adopted property is that 
the set of points in a cluster are spatially close to each 
other in some subspace of the original high dimensional 
space (Agrawal et al., 1998; Aggarwal et al., 1999; 
Aggarwal and Yu, 2000). Note that subspace clustering 
based on spatial distance is limited in its ability to find 
clusters with high correlations. In biological applications, 
genes with different expression levels may still exhibit 
consistent up and down regulation patterns (called co-
regulation patterns) under a subset of conditions. 
Recently, algorithms such as residue-based biclustering 
(Cheng and Church, 2000), Order preserving biclustering 
(Ben-Dor et al., 2002; Liu and Wang, 2003; Liu et al, 
2004b) and the search of shifting and scaling patterns 
(Wang et al., 2002; Yang et al, 2005; Xu et al, 2006) were 
developed to look for specific co-regulation patterns. Our 
team at UNC is one of the leading groups conducting 
research in subspace clustering and has made several key 
contributions (Wang et al., 2002; Liu and Wang, 2003; 
Liu et al, 2004b ; Yang et al, 2005; Xu et al, 2006) in 
pattern-based subspace clustering algorithms.  
 
2.2. Machine Learning Techniques in 
Prediction of Phenotypes 

 
There has been extensive research in training 

classifiers for predicting phenotype values from gene 
expression data. Several classification techniques, 
including K-nearest neighbor classifier, decision tree, 
Support Vector Machine (SVM), and logistic regression, 
have been widely used. Among them, the margin-based 
classifiers including the support vector machine (SVM) 
and penalized logistic regression (PLR) have scored many 
successes. For example, SVM and PLR have been 
implemented with high accuracy using microarray gene 
expression data for cancer study (Brown et al., 1999; 
Mukherjee et al., 1999; Furey et al., 2000; and Zhu and 
Hastie 2004). In binary classification or supervised 
learning, margin-based techniques usually deliver high 
performance by implementing the idea of large margins. 
Specifically, given a training data set of n samples {(xi, 
yi), i=1,…,n} obtained from unknown probability 
distribution P(x,y),  where yi∈ {+1, -1} is the outcome 
(of a given phenotype) of individual i with input xi, then 
the goal is to build a classifier to predict class y for a new 
subject with given x. For such a problem, machine 
learning is performed by constructing a function f, 
mapping from x to y, such that sign(f(x)) is the 
classification rule. An important concept, so called 
margin yf(x), is critical for the success of margin-based 
classifiers.  For each sample pair (xi, yi), the margin yif(xi) 
indicates the correctness and strength of classification of 
xi by f. 



A desirable classifier is one with good generalization 
ability, which is measured by the Generalization Error 
(GE). The GE, defined as the probability of 
misclassification, can be written as 
Err(f)=P(yf(x)<0)=0.5E(1-sign(yf(x)). A margin-based 
classifier with a loss function V(u) tries to minimize the 
GE by using the loss function V which mimics the role of 
1-sign or commonly called 0-1 loss, i.e., 0.5(1-sign). For 
example, SVM uses the hinge loss function with V(u)=[1-
u]+, see Lin (2000); penalized logistic regression (PLR) 
adopts the logistic loss V(u)=log(1+exp(-u)), see Wahba 
(1998); AdaBoost employs the exponential loss function 
V(u)=exp(-u), see Friedman, Hastie and Tibshirani 
(2000); and the Ψ loss satisfies U> Ψ(u)>0 if ],0( τ∈u  
and V(u)=1-sign(u) otherwise (Shen et al., 2003).  

Despite the success in predicting discrete phenotype 
classes, margin-based classifiers cannot be applied to 
estimate the probability distribution of a phenotype 
directly. In our study, we are interested in both. For 
instance, it is more important to estimate the susceptibility 
to cancer of a given mouse line than to only give a 
boolean classification. Therefore, significant additional 
development is required in order to use large margin 
classifiers. 
 
2.3. Challenges 
 

A number of computational challenges lie ahead. 
These include, but are not limited to, dealing with data 

heterogeneity, handling high complexity, and the 
presence of noise. This project aims to address these 
issues and provide data mining and statistical analysis 
tools to enable learning from multiple types of data. This 
1) will provide a framework from which mathematical 
models of the underlying biochemistry, genetics, and 
physiology can be developed; 2) will lead to the 
identification of biomarkers for the disease and 3) will 
describe new methods for prediction of disease 
progression and classification of mouse lines. 
Conceptually, the data can be thought of as organized into 
a large matrix. Each mouse line corresponds to a column 
and the rows represent SNPs, gene expressions, and 
phenotypic measurements captured, as illustrated in 
Figure 1. 

Several key characteristics of this large data matrix 
complicate its analysis:  

• The dimensionality is high since the data matrix 
contains massive amounts of information on 
(relatively) few subjects and there exist both complex 
correlations and causal relationships between 
variables. 

• The data matrix is comprised of disparate 
measurements including both continuous and discrete 
variables, which may not be directly comparable to 
each other. 

• The data matrix is not static, but growing, both in 
terms of adding new CC lines and measurements. 

Figure 1. Data mining pipeline 
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The data will eventually contain high-density SNPs 
(Single Nucleotide Polymorphism), or even whole 
genome sequences, for at least hundreds of CC lines 
and millions of phenotypic measurements (molecular 
and physiological) and other derived variables. 

• Individual items may be contaminated, noisy or 
simply missing, which makes detectable relationships 
hard to “see”, and thus hard to interpret.  

• The number of unknowns far exceeds the number of 
knowns since relatively little is known about 
associations between polymorphisms to gene 
expression pathways to phenotypic observations. 
Moreover, it is likely that there is more than one 
pathway related to a given phenotypic observation, 
possibly characterized by different gene expression 
patterns.  
 
Consequently, the number of potential hypotheses is 

extremely large, making it intractable to generate and test 
every possibility. New data structures and data mining 
methods are needed to address these challenges. We need 
to develop novel and scalable data management and 
mining techniques to enable high throughput genetic 
network analysis, real-time genome-wide exploratory 
analysis, and interactive visualization. This requires new 
methods to support instant access and computation for 
any user-specified regions and enable fast and accurate 
correlation calculation and retrieval of loci with high 
linkage disequilibrium. 

 
3. Summary 
 

In this presentation, I will outline the research scope 
depicted in Figure 1, which includes the following three 
directions. 
• Developing efficient data structures and access 

methods to support efficient analysis of high-density 
data and interactive visualization 

• Designing efficient methods for genetic network 
analysis using subspace pattern discovery techniques 

• Developing efficient classification approaches to 
build prediction models based on the subspace 
patterns discovered above  
 
In particular, I will discuss the successes and open 

problems from our experience in developing and 
integrating novel techniques in bioinformatics, data 
management, data mining, statistics, and knowledge 
management, to discover, summarize, and use subspace 
patterns for efficient analysis and visualization. 
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