
1 Introduction 
Recent development of high throughput data acquisition 
technologies in a number of domains (e.g., biological sci-
ences, atmospheric sciences, space sciences, commerce) 
together with advances in digital storage, computing, and 
communications technologies have resulted in the prolifera-
tion of a multitude of physically distributed data repositories 
created and maintained by autonomous entities (e.g., scien-
tists, organizations).  The resulting increasingly data rich 
domains offer unprecedented opportunities in computer as-
sisted data-driven knowledge acquisition in a number of 
applications including in particular, data-driven scientific 
discovery in bioinformatics (e.g., characterization of protein 
sequence-structure-function relationships in computational 
molecular biology), environmental informatics, and health 
informatics. Machine learning algorithms offer some of the 
most cost-effective approaches to knowledge acquisition 
(discovery of features, correlations, and other complex rela-
tionships and hypotheses that describe potentially interest-
ing regularities) from large data sets. However, the applica-
bility of current approaches to machine learning in emerging 
data rich applications in practice is severely limited by a 
number of factors: 
• Data repositories are large in size, dynamic, and physi-

cally distributed. Consequently, it is neither desirable nor 
feasible to gather all of the data in a centralized location 
for analysis. In other domains, the ability of autonomous 
organizations to share raw data may be limited due to a 
variety of reasons (e.g., privacy considerations [Clifton et 
al., 2003]). In both cases, there is a need for efficient al-
gorithms for learning from multiple distributed data 
sources without the need to transmit large amounts of 
data.  

• Autonomously developed and operated data sources of-
ten differ in their structure and organization (relational 
databases, flat files, etc.). Furthermore, the data sources 
often limit the operations that can be performed (e.g., 
types of queries – relational queries, restricted subsets of 
relational queries, statistical queries, execution of user-
supplied code to compute answers to queries that are not 
directly supported by the data source;). Hence, there is a 
need for effective strategies for efficiently obtaining the 
information needed for learning under the operational 
constraints imposed by the data sources, and theoretical 
guarantees about the performance of the resulting classi-
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fiers relative to the setting in which the learning algo-
rithm has unconstrained access to a centralized data set. 

• Autonomously developed data sources differ with respect 
to data semantics. The Semantic Web enterprise [Bern-
ers-Lee et al., 2001] is aimed at making the contents of 
the Web machine interpretable. Data and resources on 
the Web are annotated and linked by associating meta-
data that make explicit, the ontological commitments of 
the data source providers or in some cases, the shared on-
tological commitments of a small community of users. 
The increasing need for information sharing between or-
ganizations, individuals and scientific communities has 
led to several community-wide efforts aimed at the con-
struction of ontologies in several domains. Explicit speci-
fication of the ontology associated with a data repository 
helps standardize the semantics to an extent. Collabora-
tive scientific discovery applications often require users 
to be able to analyze data from multiple, semantically 
disparate data sources from different perspectives in dif-
ferent contexts. In particular, there is no single privileged 
perspective that can serve all users, or for that matter, 
even a single user, in every context. Hence, there is a 
need for methods that can efficiently obtain from a fed-
eration of autonomous, distributed, and semantically het-
erogeneous data sources, the information needed for 
learning (e.g., statistics) based on user-specified semantic 
constraints between user ontology and data-source on-
tologies..  

Against this background, we consider the problem of data 
driven knowledge acquisition from autonomous, distributed, 
semantically heterogeneous, data sources. 
2 Learning from Distributed Data 
Given a data set D, a hypothesis class H, and a performance 
criterion P, an algorithm L for learning (from centralized 
data D) outputs a hypothesis h ∈ H that optimizes P.  In 
pattern classification applications, h is a classifier (e.g., a 
decision tree.) The data D consists of a (multi)set of training 
examples. Each training example is an ordered tuple of at-
tribute values, where one of the attributes corresponds to a 
class label and the remaining attributes represent inputs to 
the classifier. The goal of learning is to produce a hypothe-
sis that optimizes the performance criterion (e.g., minimiz-
ing classification error on the training data) and the com-
plexity of the hypothesis. In a distributed setting, a data set 
D is distributed among the sites 1,...,n containing  data set 
fragments D1,…,Dn. Two simple (and common) types of 
data fragmentation are: horizontal fragmentation and verti-
cal fragmentation. More generally, the data may be frag-
mented into a set of relations (as in the case of tables of a 
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relational database, but distributed across multiple sites). 
We assume that the individual data sets D1,…,Dn collec-
tively contain (in principle) all the information needed to 
construct the data set D.   
The distributed setting typically imposes a set of constraints 
Z on the learner that are absent in the centralized setting. For 
example, the constraints Z may prohibit the transfer of raw 
data from each of the sites to a central location while allow-
ing the learner to obtain certain types of statistics from the 
individual sites (e.g., counts of instances that have specified 
values for some subset of attributes), or in the case of 
knowledge discovery from clinical records, Z might include 
constraints designed to protect the privacy of patients. 
The problem of learning from distributed data can be stated 
as follows: Given the fragments D1,…,Dn of a data set D 
distributed across the sites 1,…,n, a set of constraints Z, a 
hypothesis class H, and a performance criterion P, the task 
of the learner Ld is to output a hypothesis that optimizes P 
using only operations allowed by Z.   Clearly, the problem 
of learning from a centralized data set D is a special case of 
learning from distributed data where n=1 and Z=∅. Having 
defined the problem of learning from distributed data, we 
proceed to define some criteria that can be used to evaluate 
the quality of the hypothesis produced by an algorithm Ld 
for learning from distributed data relative to its centralized 
counterpart.  We say that an algorithm Ld for learning from 
distributed data sets D1,…,Dn is exact relative to its central-
ized counterpart L if the hypothesis produced by Ld is iden-
tical to that obtained by L from the data set D obtained by 
appropriately combining the data sets D1,..,Dn.  
Proof of exactness of an algorithm for learning from distrib-
uted data relative to its centralized counterpart ensures that a 
large collection of existing theoretical (e.g., sample com-
plexity, error bounds) as well as empirical results obtained 
in the centralized setting carry over to the distributed set-
ting. 
A General Strategy for Transforming Centralized 
Learners into Distributed Learners: Our general strategy 
for designing an algorithm for learning from distributed data 
that is provably exact with respect to its centralized counter-
part (in the sense defined above) follows from the observa-
tion that most of the learning algorithms use only some sta-
tistics computed from the data D in the process of generat-
ing the hypotheses that they output. (Recall that a statistic is 
simply a function of the data.) This yields a natural decom-
position of a learning algorithm into two components: 
a. an information extraction component that formulates and 

sends a statistical query to a data source and  
b. a hypothesis generation component that uses the resulting 

statistic to modify a partially constructed hypothesis (and 
further invokes the information extraction component as 
needed).  

A statistic s(D) is called a sufficient statistic for a parameter 
θ  if s(D), loosely speaking, provides all the information 
needed for estimating the parameter from data D [Fisher, 
1922]. Thus, sample mean is a sufficient statistic for the 
mean of a Gaussian distribution.  

Inspired by theoretical work on PAC learning from statisti-
cal queries [Kearns, 1998], we have generalized this notion 
of a sufficient statistic for a parameter θ  into a sufficient 
statistic ( )Ds hL,  for learning a hypothesis h  using a learning 
algorithm L  applied to a data set D [Caragea et al., 2004a; 
2005]. Trivially, the data D and the hypothesis h are both 
sufficient statistics for learning h using L. We are typically 
interested in statistics that are minimal or at the very least, 
substantially smaller in size (in terms of the number of bits 
needed for encoding) than the data set D. In some simple 
cases, it is possible to extract a sufficient statistic ( )Ds hL,  
for constructing a hypothesis h in one step  (e.g., by query-
ing the data source for a set of conditional probability esti-
mates when L is the standard algorithm for learning a Naive 
Bayes classifier). In a more general setting, h is constructed 
by L by interleaving information extraction (statistical 
query) and hypothesis construction operations. Thus, a deci-
sion tree learning algorithm would start with an empty ini-
tial hypothesis h0, obtain the sufficient statistics (expected 
information concerning the class membership of an instance 
associated with each of the attributes) for the root of the 
decision tree (a partial hypothesis h1), and recursively gen-
erate queries for additional statistics needed to iteratively 
refine h1 to obtain a succession of partial hypotheses h1 , h2 
… culminating in h (See Figure 1). In this model, the only 
interaction of the learner with the repository of data D is 
through queries for the relevant statistics. Information ex-
traction from distributed data entails decomposing each sta-
tistical query q posed by the information extraction compo-
nent of the learner into sub queries nqq ,...1 that can be an-
swered by the individual data sources nDD ,..,1  respectively, 
and a procedure for combining the answers to the sub que-
ries into an answer for the original query q (See Figure 2).  

Figure 1: Learning = Statistical Query Answering + Hy-
pothesis Construction

Figure 2: Learning from Distributed Data = Statistical Query 
Answering + Hypothesis construction 



Figure 3: Student data collected by two departments from a statisti-
cian’s perspective. 

We have shown that this general strategy for learning 
classifiers from distributed data is applicable to a 
broad class of algorithms for learning classifiers from 
data [Caragea et al., 2004a]. Consequently, for these 
algorithms, we can devise a strategy (plan) for 
computing h from the data D using sufficient 
statistics.  When the learner's access to data sources is 
subject to constraints Z, the resulting plan for 
information extraction has to be executable without 
violating the constraints Z. The exactness of the 
algorithm Ld for learning from distributed data relative 
to its centralized counterpart follows from the 
correctness of the query decomposition and answer 
composition procedures. 
More precisely, we have applied the general framework 
described above for construction of algorithms for learning 
classifiers from distributed data to design provably exact 
algorithms for learning Naïve Bayes, Nearest Neighbor, 
Bayes Network, Neural Network, and Decision Tree classi-
fiers from distributed data under horizontal and vertical data 
fragmentation [Caragea, 2004a], and Support Vector Ma-
chine (SVM) classifiers under horizontal data fragmentation 
(at the expense of multiple passes through the distributed 
data) [Caragea et al., 2004; Honavar & Caragea, 2008]. We 
have also established the precise conditions under which the 
proposed algorithms offer significant savings in bandwidth, 
memory, and/or computation time (relative to their central-
ized counterparts) [Caragea, 2004; Honavar & Caragea, 
2008].  
Relative to the large body of work on learning classifiers 
from distributed data (surveyed in Park & Kargupta, 2002), 
the distinguishing feature of this approach is a clear separa-
tion of concerns between hypothesis construction and ex-
traction of sufficient statistics from data.  This makes it pos-
sible to explore the use of sophisticated techniques for query 
optimization that yield optimal plans for gathering sufficient 
statistics from distributed data sources under a specified set 
of constraints describing the query capabilities of the data 
sources, operations permitted by the data sources, and avail-
able computation, bandwidth, and memory resources. It also 
opens up the possibility of exploring algorithms that learn 
from distributed data a hypothesis hε whose error is small 
relative to the error of a hypothesis h (obtained in the setting 
when the learner has unrestricted access to D), in scenarios 
where the constraints Z make it impossible to guarantee 
exactness in the sense defined above. The proposed ap-
proach also lends itself to adaptation to learning from se-
mantically heterogeneous data sources. 

3 Learning from Semantically Heterogeneous 
Data  

In order to extend our approach to learning from 
distributed data (which assumes a common ontol-
ogy that is shared by all of the data sources) into 
effective algorithms for learning classifiers from 
semantically heterogeneous distributed data, tech-
niques need to be developed for answering the sta-
tistical queries posed by the learner in terms of the 
learner’s ontology O from the heterogeneous data 

sources (where each data source Di has an associated ontol-
ogy Oi). Thus, we have to solve a variant of the problem of 
integrated access to distributed data repositories – the data 
integration problem [Levy, 2000; Calvanese & De Gia-
como, 2005] in order to be able to use machine learning 
approaches to acquire knowledge from semantically hetero-
geneous data.  
This problem is best illustrated by an example: (Figure 3). 
Consider two academic departments that independently col-
lect information about their students.  Suppose a data set D1 
collected by the first department is organized in two tables: 
Student, and Outcome, linked by a Placed-In Relation using 
ID as the common key. Students are described by ID, Ma-
jor, GPA, Ethnicity and Intern. Suppose a data set D2 col-
lected by the second department has a Student table and a 
Status table, linked by Has-Status relation using Soc Sec as 
the common key. Suppose Student in D2 is described by the 
attributes SocSec, Field, Gender, Work-Experience and 
Grade. Consider a user, e.g., a university statistician, inter-
ested in constructing a predictive model based on data from 
two departments of interest from his or her own perspective, 
where the representative attributes are Student ID, Major, 
Gender, Ethnicity, and Grade, Internship and Employment 
Status.  For example, the statistician may want to construct a 
model that can be used to infer whether a typical student 
(represented as in the entry corresponding to DU in Figure 
3) is likely go on to get a Ph.D. This requires the ability to 
perform queries over the two data sources associated with 
the departments of interest from the user's perspective (e.g., 
fraction of students with internship experience that go onto 
Ph.D). However, because the structure (schema) and data 
semantics of the data sources differ from the statistician’s 
perspective, he/she must establish the correspondences be-
tween the schema attributes and their values. 

Figure 4: Attribute value taxonomies (ontologies) O1  and O2 associated 
with the attributes Outcome and Status in two data sources of interest. OU is 
the ontology for Employment Status from the user’s perspective.



Figure 5: An example of user-specified semantic correspon-
dences between the user ontology OU and data source ontolo-
gies O1  and O2 (from Figure 4) 
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We adopt a federated, query-centric approach to answering 
statistical queries from semantically heterogeneous data 
sources, based on ontology-extended relational algebra 
[Bonatti et al., 2003].  Specifically, we associate explicit 
ontologies with data sources to obtain ontology extended 
relational data sources (OERDS). An OERDS is a tuple 
D={D,S,O}, where D is the actual data set in the data 
source, S the data source schema and O the data source on-
tology [Caragea, 2004; Caragea et al., 2005; Honavar & 
Caragea, 2008]. A relational data set D is an instantiation 
I(S) of a schema S. The ontology O of an OERDS D consists 
of two parts: structure ontology, OS, that defines the seman-
tics of the data source schema (entities, and attributes of 
entities that appear in data source schema  S); and content 
ontology, OI, that defines the semantics of the data instances 
(values and relationships between values that the attributes 
can take in instantiations  of schema S). Of particular inter-
est are ontologies that take the form of is-a hierarchies and 
has-part hierarchies. For example, the values of the Status 
attribute in data source D2 are organized in an is-a hierar-
chy. A user’s view of data sources D 1 ,D 2 .. D n  is speci-
fied by user schema SU,  user ontology OU, together with a 
set of semantic constraints IC, and the associated set of 
mappings from the user schema SU to the data source sche-
mas S1,...,Sn and  from user ontology OU to the data source 
ontologies O1,…,On  [Caragea et al, 2005]. Figure 4 shows 
examples of ontologies that take the form of is-a hierarchies 
over attribute values. Figure 5 shows some simple exam-
ples of user-specified semantic constraints between the user 
perspective and the data sources D1 and D2, respectively.  
How can we answer a statistical query in a setting in which 
autonomous data sources differ in terms of the levels of ab-
straction at which data are described?  For example: Con-
sider the data source ontologies O1 and O2 and the user on-
tology OU shown in Figure 4. The attribute Status in data 
source D2 is specified in greater detail (lower level of ab-
straction) than the corresponding attribute Outcome is in D1. 
That is, data source D2 carries information about the precise 
status of students after they graduate (specific advanced 
degree program e.g., Ph.D., M.S. that the student has been 
accepted into, or the type of employment that the student 
has accepted), whereas data source D1 makes no distinctions 
between the types of graduate degrees or types of employ-
ment. Suppose we want to answer the query: What fraction 
of the students in the two data sources got into a Ph.D. pro-
gram? Answering this query is complicated by the fact that 
the Outcome of students in data source D1 are only partially 
specified [Zhang et al., 2003; 2006] with respect to the on-
tology OU. Consequently, we can never know the precise 
fraction of students that got into a Ph.D. program based on 
the information available in the two data sources. In such 
cases, answering statistical queries from semantically het-
erogeneous data sources requires the user to supply not only 
the mapping between the ontology and the ontologies asso-
ciated with the data sources but also additional assumptions 
of a statistical nature (e.g., that grad program admits in D1 
and D2 can be modeled by the same underlying distribu-
tion). The validity of the answer returned depends on the 

validity of the assumptions and the soundness of the proce-
dure that computes the answer based on the supplied as-
sumptions.  
Given a means of answering statistical queries from seman-
tically heterogeneous data, we can devise a general frame-
work for learning predictive models from such data (See 
Figure 6). Based on this framework, we have implemented 
a prototype of an intelligent data understanding system  
(INDUS) that supports: execution of statistical queries 
against semantically heterogeneous ontology extended data 
sources, and the construction of predictive models (e.g., 
classifiers) from such data sources (See Figure 7). 
4 Research in Progress 
 Our current work is focused on the development of a se-
mantics-enabled infrastructure for data-driven knowledge 

Figure 6: General Framework for learning classifiers from 
semantically heterogeneous distributed data.  

Figure 7: The INDUS System  



acquisition for a broad range of e-science applications (e.g., 
bioinformatics). Work in progress is aimed at: 
(a) Further development of algorithms with provable per-

formance guarantees (in terms of accuracy of results, 
bandwidth and computational efforts), relative to their 
centralized counterparts, for learning predictive models 
(including their multi-relational counterparts) from se-
mantically heterogeneous, distributed  data sources, un-
der a variety of constraints on the operations supported 
by the data sources. Of particular interest are resource-
bounded approximations of answers to statistical queries 
generated by the learner (e.g., using sampling strategies); 
approximation criteria for evaluation of the quality of 
classifiers obtained in the distributed setting under a 
given set of resource constraints and query capabilities 
relative to that obtained in the centralized setting with or 
without such constraints. This is especially important in 
application scenarios in which it is not feasible to obtain 
exact answers to statistical queries posed under the ac-
cess and resource constraints imposed by the distributed 
setting 

(b) Reformulation of ontology extended data sources using 
description logics based ontology and mapping lan-
guages (RDF, OWL, etc.) and their distributed counter-
parts such as P-DL [Bao et al., 2007a]. Of particular in-
terest are federated algorithms for reasoning with dis-
tributed ontologies [Bao et al., 2006] to support querying 
semantically disparate data sources and privacy-
preserving reasoning algorithms [Bao et al., 2007b]. 

(c) Extending INDUS to support learning of predictive 
models from alternately structured data such as images, 
sequences, text, and graphs. 

(d) Development of benchmark data sources (including data, 
associated ontologies, and mappings) to facilitate com-
parison of alternative approaches to building predictive 
models from distributed data. 

(e) Experimental evaluation of the resulting semantics-
enabled  algorithms for learning predictive models from 
semantically heterogeneous data along several important 
dimensions including characteristics of data sources 
(complexity of data source schema, ontologies, and 
mappings; data source query and processing capabilities, 
size of the data sets, prevalence of partially missing at-
tribute values as a consequence of integration of data de-
scribed at multiple levels of granularity), errors or incon-
sistencies in semantic interoperation constraints and 
mappings; characteristics of algorithms (e.g., types of 
statistics needed for learning), and performance criteria 
(quality of results produced relative to the centralized 
counterparts, computational resource, bandwidth, and 
storage usage). 

(f) Design, implementation, and dissemination of a modu-
lar, open source implementation of a suite of ontology-
based inference, query rewriting, and learning algo-
rithms (to be implemented as services that can be in-
voked on a collection of networked ontology-extended 
data sources). 
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