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Abstract

The field of knowledge discovery and data mining is con-
cerned with extracting actionable knowledge from data in as
efficient a manner as possible. Over the last decade and a
half, much progress has been made in terms of the develop-
ment of novel and efficient algorithms. There are also many
success stories reported in novel application domains, where
the discovery of actionable patterns has led to important eco-
nomic and scientific breakthroughs.

That said, as a field we are still quite young and much
remains to be done. In this article we will focus on one as-
pect of the above theme, namely efficient algorithms. On this
front we will take a detailed look at the promise offered by
architecture-conscious algorithm designs and demonstrate
both the viability and utility of such designs. Broader im-
plications for education and for cyber-enabled discovery for
innovation will also be discussed.

1. Introduction

Advances in technology have enabled us to collect vast
amounts of data across a myriad of domains for various
purposes, ranging from astronomical observations to health
screening tests, from computational fluid simulations to net-
work flow data, from genomic data to large scale interac-
tion networks, at an ever-increasing pace. To benefit from
these large data stores often housing tera- and even peta-
scale datasets, organizations and individuals have increas-
ingly turned to knowledge discovery and data mining (KDD)
methods, to extract vital information and knowledge from
such data stores.

At an abstract level the KDD process is concerned with
extracting actionable knowledge from data stores efficiently.
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Over the last 15+ years much progress has been made. New
and efficient KDD algorithms have been developed and de-
ployed. Key scientific, engineering, financial and economic
breakthroughs have been enabled by various data mining and
data preprocessing techniques. That said we are still a very
young field and there is indeed a long laundry list of objec-
tives to be met, ranging from improved theoretical founda-
tions in key KDD sub-fields to a better understanding of how
to define and determine pattern interestingness, from new ap-
plication domains such as interaction graphs and proteomics
to biomedical knowledge discovery, from better visualization
methods that can aid in data and model understanding to de-
veloping even more efficient and scalable algorithms capable
of handling peta bytes of scientific and web data. The last of
these, efficiency, is the primary focus of this article.

Efficiency is critical to the KDD process since the process
is iterative (repetitive) and involves a human-in-the-loop (in-
teractive). In fact interactivity is often the key to facilitating
effective data understanding and knowledge discovery since
lengthy time delay between responses of two consecutive
user requests can disturb the flow of human perception and
formation of insight. KDD researchers have tackled the prob-
lem of scalability and efficiency in numerous ways: through
the development of innovative algorithms which reduce the
theoretical or empirical complexity; through the use of com-
pression and sampling techniques to reduce memory and I/O
costs; and through the use of parallel and distributed algo-
rithm designs. In this article we submit that an orthogonal
design strategy – architecture conscious algorithm designs
– in addition to the afore-mentioned ones needs to be in-
vestigated and integrated with mainstream KDD algorithms.
There are two reasons for this argument: i) it is a very fruitful
endeavor often yielding performance improvements of up to
3 orders of magnitude; ii) with impending commodity multi-
core technology it more or less becomes a necessity.

Over the past several years, architectural innovation in
processor design has led to new capabilities in single-chip



commodity processing and high end compute clusters. Ex-
amples include hardware prefetching, simultaneous multi-
threading (SMT), and more recently true chip multiprocess-
ing. At the very high-end, systems area networking tech-
nologies like InfiniBand have spurred the development of
affordable cluster-based supercomputers capable of storing
and managing peta bytes of data. We contend that data min-
ing algorithms often require significant computational, I/O
and communication resources, and thus stand to benefit from
such innovations if appropriately leveraged. The challenges
to do so are daunting.

First, a large number of state-of-the-art data mining al-
gorithms grossly under-utilize modern processors, the build-
ing blocks of current generation commodity clusters. This is
due to the widening gap between processor and memory per-
formance and the memory and I/O intensive nature of these
applications. Second, the emergence of multi-core archi-
tectures to the commodity market, bring with them further
complications. Key challenges brought to the fore include
the need to enhance available fine-grained parallelism and to
alleviate memory bandwidth pressure. Third, parallelizing
data mining algorithms on a multi-level cluster environment
is a challenge given the need to share and communicate large
sets of data and to balance the workload in the presence of
data skew.

In this article we discuss progress made in the context
of these challenges and attempt to demonstrate that “archi-
tecture conscious” solutions are both viable and necessary.
We will attempt to separate general methodologies and tech-
niques from specific instantiations whenever it makes sense.
We will conclude with a discussion on future outlook, both
in the context of systems support for cyber discovery – en-
abling the development of new algorithms on emerging ar-
chitectures – as well as in terms of educational objectives
brought to the fore in this context.

2 Algorithms for Modern Uniprocessors

The widening gap between processor performance and
memory subsystem performance in modern processors is a
critical bottleneck limiting the performance of data inten-
sive applications [7]. Further hampering performance is the
parameter and data-dependent aspects of data mining algo-
rithms that makes predicting access patterns very difficult
thus leading to poor data locality. The reliance on dynamic
data structures to house important meta information to prune
the search space often limits available instruction level par-
allelism while also hampering data locality leading to poor
processor utilization. The challenges to overcome are daunt-
ing and below we identify several simple strategies that seem
to be quite useful for a range of data analysis and manage-
ment applications.

The first strategy is to simply improve the spatial local-
ity within such algorithms. The basic idea is to ensure that

once a data object is read or written to, objects located in
spatial proximity to said object will also be touched soon.
Exploiting this strategy requires an understanding of the ac-
cess patterns in the algorithm, identifying the dominant ac-
cess patterns (to make the common case fast), and then real-
izing a memory placement that matches the dominant access
patterns. We have found this to be useful for a host of al-
gorithms including frequent pattern mining, clustering, and
outlier detection. In fact as a recent study on frequent pat-
tern mining showed such a strategy can yield up to a 50%
improvement in execution times [7].

The second strategy, is to improve the temporal locality
within such algorithms.Here, the objective is to schedule all
the operations that must be carried out on a data object close
together in time. Exploiting this strategy requires the abil-
ity to partition the data (or the data structure) and operate on
a partition-by-partition basis, i.e., process a partition com-
pletely before moving on to the next partition. Such a strat-
egy minimizes the number of times one has to cross different
levels of the memory hierarchy. Note that partitions may be
overlapping but the key is to minimize degree of overlap.
Furthermore, partitions may be a natural cut of the data (or
the data structure) or alternatively may be constructed on the
fly through suitable hash or approximate ordering functions.
It turns out one can exploit this strategy for a range of appli-
cations including for clustering, classification, outlier detec-
tion and frequent pattern mining among others. For example
on a state-of-the-art frequent itemset mining algorithm we
find that such strategies can yield a 2 fold improvement for
in-core datasets and up to a 400 fold improvement for out of
core datasets[3].

The third strategy is to leverage key features of such ar-
chitectures effectively. For example improving spatial local-
ity can have the added benefit of effectively leveraging hard-
ware prefetching – a latency tolerating mechanism available
in modern architectures. Another recent innovation – simul-
taneous multithreading – a mechanism that enables one to
place multiple thread contexts in hardware with a goal of in-
creasing available instruction level parallelism. A naive re-
alization for data mining, essentially deploying parallel in-
dependent threads (tasks), often fails to achieve the desired
effect due to cache conflicts and data stalls. However, we
find that co-scheduling tasks that operate on identical or re-
lated pieces of data, limit the number of data stalls and con-
flict misses, yielding close to ideal performance for some
applications[8].

The fourth strategy, one that requires an in-depth knowl-
edge of the algorithm, is to examine alternative design strate-
gies that limit the use of pointer-based data structures with
the potential to yield algorithms with smaller memory foot-
prints and better ILP. As an example we recently considered
the problem of mining frequent trees within a forest of trees.
The key to our approach was to rely on a bijection between



trees and sequences (with appropriate structural information
embedded in the representation). Subsequently we designed
a dynamic programming based algorithm that finds frequent
patterns by recasting a specialized case of the subtree iso-
morphism problem to the much simpler problem of subse-
quence matching. The approach is memory conscious and
much more efficient, compared to the state-of -the-art algo-
rithms which rely on pointer-based data structures. Our algo-
rithms, when compared to the state-of-the-art, exhibited up
to 355-fold improvement in overall mining time and a sig-
nificant reduction in memory footprint size (up to 2 orders
of magnitude) [20, 22]. As it turns out this approach has an
even more general appeal in that a similar strategy proved
to be extremely effective for indexing XML data [21]. Once
again we found that the approach outperforms the state-of-
the-art XML indexing strategies by up to 3 orders of mag-
nitude while utilizing significantly less memory and disk re-
sources.
3 Mining on Emerging CMP Architectures

Further complicating the already difficult task of utilizing
modern architectural platforms efficiently is the recent emer-
gence of true chip multiprocessing (CMP), often referred to
as multicore chips. Designs range from the general purpose
(AMD, Intel) to the specialized (Sony-Toshiba-IBM Cell,
Sun) to the niche markets (GPUs). Although current designs
have 4-8 cores, Intel’s 2015 Processor road map proposes
CMPs with hundreds of cores1.

Parallelizing existing algorithms is an obvious objective
in this context. While much work has been done on this,
there are some important challenges. Paramount to leverag-
ing the additional compute capability is an effective task par-
titioning mechanism to distribute the work among individual
processing elements. This can be particularly challenging in
the presence of data and control dependencies. Moreover, the
data and parameter dependent aspects of data mining work-
loads makes estimating the lifetime of a task difficult. A fi-
nal challenge, particular to emerging CMPs, is the fact that
bandwidth to main memory is likely to be a precious shared
commodity.

To address these challenges we believe adaptable algo-
rithm designs must take center stage. For example, to handle
the issue of task granularity we have proposed schemes that
allow the size of a task to morph depending on the state of the
system. We term this moldable task partitioning. where each
task makes a decision at pre-set points during its runtime
whether it needs to further break up into sub-tasks, which
can subsequently be enqueued on a distributed shared task
queue or to continue processing. This decision would be
based on the current load balance in the system. Adaptive
partitioning not only affords a dynamic granularity to accom-
modate variability in the associativity of the data set, it also

1http://www.intel.com/technology/magazine/computing/platform-2015-0305.htm

can improve cache performance [4]. We find that such a strat-
egy is both necessary and extremely effective when process-
ing highly skewed datasets in the context of graph and tree
mining[4, 20] resulting in near linear speedups.

It is common that algorithms can trade increased memory
usage for improved execution times. We seek to leverage this
principle to improve run times for data mining applications
by maintaining additional state when it is inexpensive to do
so. Architectures today provide us with performance coun-
ters to estimate bandwidth utilization at runtime. We propose
to develop solutions that can trade off algorithmic state for re-
duced bandwidth consumption thereby facilitating execution
on CMPs. If there is sufficient memory bandwidth available
in the system, then we can choose to increase state for fu-
ture use. Furthermore, in the presence of contention, we can
limit or reduce state as needed. We term this adaptive state
management.

We evaluated the benefits of using adaptive state manage-
ment by mining real world data sets for substructure (graphs
and trees) mining. The task-level meta data structure is called
an embedding list, which maps discovered graphs to their
mappings in the data set. The embedding list reduces the
search space of a task at the expense of maintaining increased
state. We compared the performance of three algorithms,
one that always maintains the state (gaston [15]), one that
never maintains the state (gSpan [26]) and one that adap-
tively maintains state (ours). Notably our adaptive algorithm
is always the most efficient and when operating on smaller
number of cores the algorithm adaptively maintains more
state and when operating on large number of cores the algo-
rithm adaptively maintains less state trading memory off for
computation. Overall, the adaptive approach makes near op-
timal use of the available hardware resources[4]. This result,
particularly the implicit crossover in performance between
gaston (better on lower number of cores) and gspan (better
on higher number of cores) underscores an important point
in that simpler algorithm designs with smaller memory foot-
prints are like to be the norm for deployment on emerging
architectures.

Thus far we have discussed the performance of data min-
ing algorithms on general purpose emerging architectures.
A joint venture by Sony, Toshiba and IBM (STI) has pro-
duced a nine core architecture called the Cell BDEA. This
architecture represents an interesting design point along the
spectrum of chipsets with multiple processing elements. The
STI Cell has one main processor and eight support pro-
cessing elements (SPEs) – over 200+ GFLOPS of compute
power – and with explicit memory management – 25GB/s
off chip bandwidth. While most general purpose CMPs are
MIMD with POSIX-style threading models, the Cell’s eight
cores are SIMD vector processors, and must get specialized
task modules passed to them by the main processor. Sev-
eral workloads seem quite amenable to its architecture. For



example, high floating point workloads with streaming ac-
cess patterns are of particular interest [25]. These workloads
could leverage the large floating point throughput, and be-
cause their access pattern is known a priori, they can use
software-managed caches for good bandwidth utilization.

In recent work we have sought to map and evaluate sev-
eral important data mining algorithms on the Cell, namely
clustering, classification and anomaly detection. We inves-
tigated these algorithms along the axes of performance, pro-
gramming complexity and algorithm design [2]. Specifically,
we develop data transfer and SIMD optimizations for these
applications and evaluate them in detail to determine both
the benefits of the Cell processor for data applications, as
well as the inherent bottlenecks. As part of our compara-
tive analysis we juxtapose these algorithms with similar ones
implemented on modern architectures including the Itanium,
AMD Opteron and Pentium architectures. For the workloads
we consider, the Cell processor is up to 50 times faster than
competing technologies, when the underlying algorithm uses
the hardware efficiently. An important outcome of the study,
beyond the results on these particular algorithms is that we
answer several higher level questions, which are designed to
provide a fast and reliable estimate to application designers
for how well other workloads will scale on the Cell.

4 Mining on Emerging Clusters

Data mining on a tightly interconnected distributed clus-
ter of shared memory processors is a cost-effective and viable
solution for analyzing large datasets. In this regard a number
of researchers over the last decade have developed innovative
parallel or distributed algorithms for various data mining al-
gorithms [1, 5, 16, 24, 27, 28, 1, 6, 11, 12, 19, 17, 10, 18,
9, 13, 14]. However, we argue that here too architectural re-
sources are not being fully utilized. A multi-level – within
a multicore chip, across multiple chips on a shared memory
workstation, and across a cluster of workstations – design
strategy is needed to fully utilize such a supercomputing re-
source. Load balancing in the presence of data skew, ac-
commodating data and task parallelism across multiple lev-
els, and effectively leveraging strategies like remote memory
paging are key to efficient utilization.

For example we have recently presented a parallelization
of a fast frequent itemset mining algorithm to enable effi-
cient mining of very large, out-of-core data sets [5]. Our
implementation employs such a multi-level “architecture-
conscious” design strategy to efficiently utilize memory, pro-
cessing, storage, and networking resources while minimizing
I/O and communication overheads. Our experimental eval-
uation using a state-of-the-art commodity cluster and large
data illustrates linear scale up and significant system utiliza-
tion (up to an order of magnitude improvement over com-
peting strategies) and the ability to easily process tera-scale
datasets on a 48-node cluster.

5 Future Outlook
On the research front, the future outlook for architecture-

conscious data mining is clearly very encouraging. Quite
simply it offers a new and orthogonal approach to enhanc-
ing the efficiency with which algorithms can compute and
tackle large datasets. Moreover, with the advent of multi-
core processors to the commodity computing market it more
or less becomes a necessity since algorithm developers will
need to attune themselves to the novel features and limita-
tions of these architectures. There are clearly several direc-
tions of work to look at in the future.

While the early signs are encouraging, deployment on
other data mining techniques, in novel application settings
is still needed and very challenging. In many cases, there are
strong dependency structures at a conceptual or algorithmic
level limiting available parallelism that need to be overcome
(e.g. exact inference in graphical models). Innovative al-
gorithmic restructuring, resorting to approximate solutions
to enhance parallelism, pro-active or speculative methods all
have a role to play in this context.

A fundamental question to ask here is moving forward
what have we learnt from these successful architecture-
conscious implementations? What can we take away for fu-
ture algorithms and realizing architecture-conscious imple-
mentations on emerging and next generation platforms? The
general principles, outlined earlier, such as improving spa-
tial locality, improving temporal locality, minimizing the use
of pointer-based dynamic data structures, lowering memory
footprints and trading off memory for computation, mini-
mizing communication offer a good starting point but more
needs to be done.

This question and the basic solutions outlined lead us to
the related question of whether (cyber-)infrastructure sup-
port for realizing architecture conscious knowledge discov-
ery and data mining implementations is feasible? It is our
opinion that a services-oriented architecture holds signif-
icant promise in this context[24, 23]. Such an architec-
ture could include services for data access and partitioning
(e.g. hash-sorting, sampling, memory placement, distributed
shared data structures) ; services for data and knowledge re-
use and caching; services for scheduling and load balancing
etc. Various data pre-processing, data-mining, and visual-
ization modules can be implemented on top of these basic
services and can in turn serve as front ends for more com-
plex knowledge discovery tasks. The plug-and-play nature
of the services model is ideally suited to the interactive and
iterative nature of KDD algorithms. Furthermore, each indi-
vidual service can be attuned to the architecture upon which
it is built with the potential to yield architecture conscious so-
lutions for a wide range of of data mining techniques and end
applications. Additionally, the “services” oriented approach
ensures useful utilization of computational resources.

On the educational front, with the advent of multi-core



architectures parallel computing is essentially entering the
main-stream commodity market. Designers must be aware
of the basic principles underlying parallel algorithm design,
familiar with important architectural advances and features,
in addition to having an innate understanding of data min-
ing principles. Co-learning group projects where groups are
formed by matching students with strong systems and archi-
tecture background along with students more familiar with
data mining and statistical learning algorithms are a useful
mechanism in this context. Such efforts are essential and
must go hand-in-hand with research advances.
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