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Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si, http://www-ai.ijs.si/SasoDzeroski/

Abstract

Computational scientific discovery aims to develop com-
puter systems that automate or facilitate the various activ-
ities that humans perform in the process of scientific dis-
covery. We propose to use the inductive databases (IDBs)
framework to support computational scientific discovery.
IDBs can store both data and models and support the in-
teractive nature of knowledge discovery, as well as other
aspects important for scientific discovery, such as induction
under constraints and theory revision.

1. Inductive Databases and Inductive Queries

Inductive databases (IDBs, Imielinski and Mannila 1996,
De Raedt 2002a) are an emerging research area at the inter-
section of data mining and databases. In addition to normal
data, inductive databases contain patterns (either material-
ized or defined as views). Besides patterns (which are of lo-
cal nature), models (which are of global nature) can also be
considered. In the IDB framework, patterns become “first-
class citizens” and can be stored and manipulated just like
data in ordinary databases.

Inductive databases embody a database perspective
on knowledge discovery, where knowledge discovery
processes become query sessions. Ordinary queries can be
used to access and manipulate data, while inductive queries
(IQs) can be used to generate (mine), manipulate, and apply
patterns. KDD thus becomes an extended querying process
(Imielinski and Mannila 1996) in which both the data and
the patterns that hold (are valid) in the data are queried. IDB
research thus aims at replacing the traditional KDD process
model, where steps like pre-processing, data cleaning, and
model construction follow each other in succession, by a
simpler model in which all data pre-processing operations,
data mining operations, as well as post-processing opera-
tions are queries to an inductive database and can be inter-
leaved in many different ways.

Given an inductive database that contains data and pat-
terns, several different types of queries can be posed. Data

retrieval queries use only the data and their results are also
data: no pattern is involved in the query. In IDBs, we can
also have cross-over queries that combine patterns and data
in order to obtain new data, e.g., apply a predictive model
to a dataset to obtain predictions for a target property. In
processing patterns, the patterns are queried without ac-
cess to the data: this is what is usually done in the post-
processing stages of data mining. Data mining queries use
the data and their results are patterns: new patterns are gen-
erated from the data and this corresponds to the traditional
data mining step. When we talk about inductive queries, we
most often mean data mining queries.

A general statement of the problem of data mining (Man-
nila and Toivonen 1997) involves the specification of a lan-
guage of patterns and a set of constraints that a pattern
has to satisfy. The latter can be divided in two parts: lan-
guage constraints and evaluation constraints. The first part
only concerns the pattern itself, while the second part con-
cerns the validity of the pattern with respect to a given data-
base. Constraints thus play a central role in data mining and
constraint-based data mining is now a recognized research
topic (Bayardo 2002). The use of constraints enables more
efficient induction and focusses the search for patterns on
patterns likely to be of interest to the end user.

In the context of inductive databases, inductive queries
consist of constraints. Inductive queries can involve lan-
guage constraints (e.g., find association rules with item A in
the head) and evaluation constraints, formed by using eval-
uation functions. The latter express the validity of a pattern
on a given dataset. We can use these to form evaluation con-
straints (e.g., find all item sets with support above a thresh-
old) or optimization constraints (e.g., find the 10 association
rules with highest confidence).

Different types of data and patterns have been consid-
ered in data mining, including frequent itemsets, episodes,
Datalog queries, and graphs. Designing inductive databases
for these types of patterns involves the design of inductive
query languages and solvers for the queries in these lan-
guages, i.e., constraint-based data mining algorithms. Of
central importance is the issue of defining the primitive con-
straints that can be applied for the chosen data and pattern



types, that can be used to compose inductive queries. For
each pattern domain (type of data, type of pattern, and prim-
itive constraints), a specific solver is designed, following
the philosophy of constraint logic programming (De Raedt
2002b).

The IDB framework is an appealing approach towards
a theory for data mining, because it employs declarative
queries instead of ad-hoc procedural constructs. As such,
it holds the promise of facilitating the formulation of an
“algebra” for data mining, along the lines of Codd’s rela-
tional algebra for databases (Calders et al. 2006b, Johnson
et al. 2000). The IDB framework is also appealing for data
mining applications, as it supports the entire KDD process
(Boulicaut et al. 1999). In inductive query languages, the
results of one (inductive) query can be used as input for
another: nontrivial multi-step KDD scenarios can be thus
supported in IDBs, rather than just single data mining oper-
ations.

2. Computational Scientific Discovery

Research on computational scientific discovery aims to
develop computer systems which produce results that, if a
human scientist did the same, we would refer to as discov-
eries. Of course, if we hope to develop computational meth-
ods for scientific discovery, we must be more specific about
the nature of such discoveries and how they relate to the
broader context of the scientific enterprise.

The term science refers both to scientific knowledge and
the process of acquiring such knowledge. It includes any
systematic field of study that relates to observed phenom-
ena (as opposed to mathematics) and that involves claims
which can be tested empirically (as opposed to philoso-
phy). Science is perhaps the most complex human intellec-
tual activity, which makes it difficult to describe. Shrager
and Langley (1990) analyze it in terms of the knowledge
structures that scientists consider and the processes or ac-
tivities they use to transform them. Basic knowledge struc-
tures that arise in science include observations, laws, and
theories, and related activities include data collection, law
formation, and theory construction.

There are two primary reasons why we might want to
study scientific discovery from a computational perspective:

• to understand how humans perform this intriguing ac-
tivity, which belongs to the realm of cognitive science;
and

• to automate or assist in facets of the scientific process,
which belongs to the realm of artificial intelligence.

Science is a highly complex intellectual endeavor, and
discovery is arguably the most creative part of the scien-
tific process. Thus, efforts to automate it completely would

rightfully be judged as audacious, but, as Simon (1966)
noted, one can view many kinds of scientific discovery
as examples of problem solving through heuristic search.
Most research in automating scientific discovery has fo-
cused on small, well-defined tasks that are amenable to such
treatment and that allow measurable progress.

Traditional accounts of science (Klemke et al. 1998)
focus on the individual, who supposedly observes nature,
hypothesizes laws or theories, and tests them against new
observations. Most computational models of scientific dis-
covery share this concern with individual behavior. How-
ever, science is almost always a collective activity that is
conducted by interacting members of a scientific commu-
nity. The most fundamental demonstration of this fact is the
emphasize placed on communicating one’s findings to other
researchers in journal articles and conference presentations.

This emphasis on exchanging results makes it essential
that scientific knowledge be communicable. We will not
attempt to define this term, but it seems clear that contri-
butions are more communicable if they are cast in estab-
lished formalisms and if they make contact with concepts
that are familiar to most researchers in the respective field
of study. In the remainder of this section, we first exam-
ine more closely the scientific method and its relation to
scientific discovery. After this, we discuss the components
of scientific behavior, that is, the knowledge structures that
arise in science and the processes that manipulate them.

2.1. The Scientific Method and Scientific Discovery

The Merriam-Webster Dictionary (2003) defines science
as: ”a) knowledge or a system of knowledge covering gen-
eral truths or the operation of general laws, especially as
obtained and tested through the scientific method, and b)
such knowledge or such a system of knowledge concerned
with the physical world and its phenomena”. The scientific
method, in turn, is defined as the ”principles and procedures
for the systematic pursuit of knowledge involving the recog-
nition and formulation of a problem, the collection of data
through observation and experiment, and the formulation
and testing of hypotheses”.

While there is consensus that science revolves around
knowledge, there are different views in the philosophy of
science (Klemke et al. 1998, Achinstein 2004) about the
nature of its content. The ‘causal realism’ position is that
scientific knowledge is ontological, in that it identifies enti-
ties in the world, their causal powers, and the mechanisms
through which they exert influence. In contrast, ‘construc-
tive empiricism’ posits that, scientific theories are objective,
testable, and predictive. We believe both frameworks are
correct, describing different facets of the truth.

The scientific method (Gower 1996), dedicated to the
systematic pursuit of reliable knowledge, incorporates a



number of steps. First we ask some meaningful question or
identify a significant problem. We next gather information
relevant to the question, which might include existing sci-
entific knowledge or new observations. We then formulate
a hypothesis that could plausibly answer the question.

Next we must test this proposal by making observations
and determining whether they are consistent with the hy-
pothesis’ predictions. When observations are consistent
with the hypothesis, they lend it support and we may con-
sider publishing it. If other scientists can reproduce our re-
sults, then the community comes to consider it as reliable
knowledge. In contrast, if the observations are inconsistent,
we should reject the hypothesis and either abandon it or,
more typically, modify it, at which point the testing process
continues. Hypotheses can take many different forms, in-
cluding taxonomies, empirical laws, and explanatory theo-
ries, but all of them can be evaluated by comparing their
implications to observed phenomena.

Most analyses of the scientific method come from
philosophers of science, who have focused mainly on the
evaluation of hypotheses and largely ignored their genera-
tion and revision. Unfortunately, what we refer to as discov-
ery resides in just these activities. Thus, although there is
a large literature on normative methods for making predic-
tions from hypotheses, checking their consistency, and de-
termining whether they are valid, there are remarkably few
treatments of their production. Some (e.g., Popper 1959)
have even suggested that rational accounts of the discov-
ery process are impossible. A few philosophers (e.g., Dar-
den 2006, Hanson 1958, Lakatos 1976) have gone against
this trend and made important contributions to the topic, but
most efforts have come from artificial intelligence and cog-
nitive science.

Briefly, scientific discovery is the process by which a sci-
entist creates or finds some hitherto unknown knowledge,
such as a class of objects, an empirical law, or an explana-
tory theory. The knowledge in question may also be re-
ferred to as a scientific discovery. An important aspect of
many knowledge structures, such as laws and theories, is
their generality, in that they apply to many specific situa-
tions or many specific observations. We maintain that gen-
erality is an essential feature of a meaningful discovery, as
will become apparent in the next section when we discuss
types of scientific knowledge.

A defining aspect of discovery is that the knowledge
should be new and previously unknown. Naturally, one
might ask ’new to whom?’. We take the position that the
knowledge should be unknown to the scientist in question
with respect to the observations and background knowledge
available to him when he made the discovery. This means
that two or more scientists can make the same discovery in-
dependently, sometimes years apart, which has indeed often
happened throughout the history of science.

2.2. The Elements of Scientific Behavior

To describe scientific behavior, we follow Shrager and
Langley (1990) and use as basic components knowledge
structures and the activities that transform them. The for-
mer represent the raw materials and products of science,
while the latter concern the process of producing scientific
knowledge. The account below mostly follows the earlier
treatise, but the definitions of several knowledge structures
and activities have changed, reflecting improvements in our
understanding over the past 15 years.

Scientific Knowledge Structures. Science is largely
about understanding the world in which we live. To this
end, we gather information about the world. Observation is
the primary means of collecting this information, and ob-
servations are the primary input to the process of scientific
discovery.

Observations (or data) represent recordings of the envi-
ronment made by sensors or measuring instruments. Typ-
ically, the state of the environment varies over time or un-
der different conditions, and one makes recordings for these
different states, where what constitutes a state depends on
the object of scientific study. We will refer to each of these
recordings as an observation.

We can identify three important types of scientific
knowledge – taxonomies, laws, and theories – that con-
stitute the major products of the scientific enterprise. The
creation of new taxonomies, laws, and theories, as well as
revising and improving existing ones, make up the bulk of
scientific discovery, making them some of the key activities
in science.

Taxonomies define or describe concepts for a domain,
along with specialization relations among them. Laws
summarize relations among observed variables, objects, or
events. Theories are statements about the structures or
processes that arise in the environment.

Note that all three kinds of knowledge are important and
present in the body of scientific knowledge. Different types
of knowledge are generated at different stages in the devel-
opment of a scientific discipline. Taxonomies are gener-
ated early in a field’s history, providing the basic concepts
for the discipline. After this, scientists formulate empiri-
cal laws based on their observations. Eventually, these laws
give rise to theories that provide a deeper understanding of
the structures and processes studied in the discipline.

A knowledge structure that a scientist has proposed, but
that has not yet been tested with respect to observations,
is termed an hypothesis. Note that taxonomies, laws, and
theories can all have this status. As mentioned earlier, hy-
potheses must be evaluated to determine whether they are
consistent with observations (and background knowledge).
If it is consistent, we say that a hypothesis has been corrob-
orated and it comes to be viewed as scientific knowledge.



If an hypothesis is inconsistent with the evidence, then we
either reject or modify it, giving rise to a new hypothesis
that is further tested and evaluated.

Background knowledge is knowledge about the environ-
ment separate from that specifically under study. It typi-
cally includes previously generated scientific knowledge in
the domain of study. Such knowledge differs from theories
or laws at the hypothesis stage, in that the scientist regards
it with relative certainty rather than as the subject of ac-
tive evaluation. Scientific knowledge begins its life cycle as
a hypothesis which (if corroborated) becomes background
knowledge.

Besides the basic data and knowledge types considered
above, several other types of structures play important roles
in science. These include models, predictions, and expla-
nations. These occupy an intermediate position, as they are
derived from laws and theories and, as such, they are not
primary products of the scientific process.

Models are special cases of laws and theories that apply
to particular situations in the environment and only hold un-
der certain environmental conditions. Predictions represent
expectations about the behavior of the environment under
specific conditions. Explanations are narratives that con-
nect a theory to a law (or a model to a prediction) by a chain
of inferences appropriate to the field.

Scientific Activities. Scientific processes and activi-
ties are concerned with generating and manipulating scien-
tific data and knowledge structures. Here we consider the
processes and activities in the same order as we discussed
the structures that they generate in the previous subsection.

The process of observation involves inspecting the en-
vironmental setting by focusing an instrument, sometimes
simply the agent’s senses, on that setting. The result is a
concrete description of the setting, expressed in terms from
the agent’s taxonomy and guided by the model of the set-
ting. Since one can observe many things in any given situ-
ation, the observer must select some aspects to record and
some to ignore.

As we have noted, scientific discovery is concerned with
generating scientific knowledge in the form of taxonomies,
laws and theories. These can be generated directly from ob-
servations (and possibly background knowledge), but, quite
often, scientists modify an existing taxonomy, law, or the-
ory to take into account anomalous observations.

Taxonomy formation (and revision) involves the organi-
zation of observations into classes and subclasses, along
with the definition of those classes. Inductive law forma-
tion (and revision) involves the generation of empirical laws
that cover observed data. Theory formation (and revision)
stands in the same relation to empirical laws as does law
formation to data. Given one or more laws, this activity
generates a theory from which one can derive the laws for a
given model by explanation.

While some scientific activities revolve around inductive
reasoning, others instead rely on deduction. Scientists typ-
ically derive predictions from laws or models, and some-
times they even deduce laws from theoretical principles.

In contrast to inductive law discovery from observations,
deductive law formation starts with a theory and uses an
explanatory framework to deduce both a law and an expla-
nation of how that law follows from the theory. The predic-
tion process takes a law, along with a particular setting, and
produces a prediction about what one will observe in the
setting. The analogous process of postdiction takes place in
cases where the scientist must account for existing obser-
vations. The process of explanation connects a theory to a
law (or a law to a prediction) by specifying the deductive
reasoning that derives the law from the theory.

To assess the validity of theories or laws, scientists com-
pare their predictions or postdictions with observations.
This produces either consistent results or anomalies, which
may serve to stimulate further theory or law formation or
revision. This process is called evaluation and generally
follows experimentation and observation.

Experimentation involves experimental design and ma-
nipulation. Experimental design specifies settings in which
the scientist will collect measurements. Typically, he varies
selected aspects of the environment (the independent vari-
ables) to determine their effect on other aspects (the depen-
dent variables). He then constructs a physical setting (this
is called manipulation) that corresponds to the desired en-
vironmental conditions and carries out the experiment.

Observation will typically follow or will be interleaved
with systematic experimentation, in which case we call it
active observation. However, there are fields and phenom-
ena where experimental control is difficult, and sometimes
impossible. In such cases the scientist can still collect data
to test his hypotheses through passive observation.

2.3. Computational Discovery and Data Mining

Computational scientific discovery focuses on apply-
ing computational methods to automate scientific activi-
ties, such as finding laws from observational data. It has
emerged from the view that science is a problem-solving ac-
tivity and that problem solving can be cast as search through
a space of possible solutions. Early research on compu-
tational discovery within the fields of artificial intelligence
and cognitive science focused on reconstructing episodes
from the history of science. This typically included iden-
tifying data and knowledge available at the time and im-
plementing a computer program that models the scientific
activities and processes that led to the scientists insight.

Recent efforts in this area have focused on individual
scientific activities (such as formulating quantitative laws)
and have produced a number of new scientific discoveries,



many of them leading to publications in the relevant scien-
tific literatures. These discoveries include qualitative laws
of metallic behavior, quantitative conjectures in graph the-
ory, and temporal laws of ecological behavior. Work in this
paradigm has emphasized formalisms used to communicate
among scientists, including numeric equations, structural
models, and reaction pathways.

Research on data mining and knowledge discovery, how-
ever, has produced another paradigm, concerned with find-
ing patterns (regularities) in data. Even when applied to sci-
entific domains, such as astronomy, biology, and chemistry,
this framework employs formalisms developed by artificial
intelligence researchers themselves, such as decision trees,
rule sets, and Bayesian networks. Mining scientific data
focuses on building highly predictive models from large
datasets, rather than producing knowledge in any standard
scientific notation.

The differences between the two paradigms are empha-
sized if we take a look at the lessons learned that have
emerged from work in scientific domains (Langley 2002):
(1) The output of a discovery system should be commu-
nicated easily to domain scientists. (2) Discovery systems
should take advantage of background knowledge to con-
strain their search. (3) Computational methods for scientific
discovery should be able to infer knowledge from small data
sets. (4) Discovery systems should produce models that
move beyond description to provide explanations of data.
(5) Computational discovery systems should support inter-
action with domain scientists.

3. Towards Inductive Scientific Databases

We propose to use the inductive databases framework to
support the process of scientific discovery. This would al-
low the development of an interactive environment that sup-
ports the process of establishing models of real world sys-
tems from measurements and observations in various scien-
tific disciplines. The framework would allow us to integrate
computational scientific discovery and data mining meth-
ods for the induction of new models and revision of existing
ones from data on one side with tools for data storage and
visualization, as well as storage, application/simulation, and
evaluation of models on the other.

While many data analysis methods have been developed
that are capable of inducing models from data, most of these
focus on the task of building the model from data only, with-
out taking into account previously developed models. In
practice, scientists and engineers build models of complex
systems gradually by revising existing (i.e., previously de-
veloped) models, rather than building them from scratch. In
this sense, model storage is necessary in a proper modeling
environment. Furthermore, scientists and engineers rarely
need complete automation of the modeling process; they

rather need an interactive environment that supports model
development as well as simulation, evaluation, and compar-
ison of different models.

The above requirements are well met in the framework
of inductive (scientific) databases. In addition to the data,
collected through scientific experiments and observations,
inductive databases would support the storage of models,
where the models could be developed by scientists or auto-
mated modelling methods. Similarly, in addition to usual
data retrieval queries that operate on data only, inductive
databases provide queries that operate on both data and
models. One type of queries can be used to combine models
and data: An example query would apply an existing model
to newly collected data and evaluate its performance.

Inductive databases allow inductive queries that are used
to induce models from data. These queries can be com-
posed of constraints on the space of candidate models that
are based on background knowledge from the domain of use
and constraints on the accuracy or validity of the model on
data. The result of an inductive query is a set of models
that can be stored in the database and can be re-used later
in further modeling efforts. These can include model revi-
sion, where an existing model is used as a starting point for
induction and is revised using recently collected data.

An inductive database would typically support different
data mining operations, including clustering and predictive
modelling. As such it would provide support for the differ-
ent scientific activities: Clustering could be used for taxon-
omy formation/revision, while predictive modelling (e.g.,
equation discovery) In sum, scientific inductive databases
can provide scientists and engineers with an interactive en-
vironment for assisting the process of modeling. Scien-
tists can interact with the database using a series of queries.
These queries allow simple data storage and manipulation
of data and models, but also more complex operations with
models, such as model induction from data, as well as sim-
ulation, evaluation and revision of stored models. Thus, sci-
entific IDBs are a worthwile goal to pursue.
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and L. Todorovski, editors, Computational Discovery of
Scientific Knowledge, pages 1–14. Springer, Berlin, 2007.


