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Abstract

Scalable and robust nonnegative matrix factorization
(NMF) algorithms and software are needed for the gener-
ation of feature vectors from text corpora. By preserving
nonnegativity, the NMF facilitates a sum-of-parts represen-
tation of the underlying term usage patterns in textual data.
Both training and test sets of documents can be parsed and
then factored by the NMF to produce a reduced-rank repre-
sentation of an entire document space. The resultingfeature
andcoefficientmatrix factors are then used to cluster doc-
uments. Recent studies with documents from the Aviation
Safety Reporting System (ASRS) have shown that (known)
anomalies of training documents can be directly mapped to
NMF-generated feature vectors. Dominant features (track-
ing words or sentences) of test documents can then be used
to generate anomaly relevance scores for those documents.

1 Introduction

Nonnegative matrix factorization (NMF) has been
widely used to approximate high dimensional data com-
prised of nonnegative components. Lee and Seung [14] pro-
posed the idea of using NMF techniques to generate basis
functions for image data that could facilitate the identifica-
tion and classification of objects. They also demonstrated
the use of NMF to extract concepts/topics from unstruc-
tured text documents. This is the context that we exploit the
so-calledsum-of-partsrepresentation offered by the NMF
for corpora such as the Aviation Safety Reporting System
(ASRS) document collection [1].

Several manuscripts have cited [14], but as pointed out
in [2] there are several (earlier) papers by P. Paatero [18,
19, 20] that documented the historical development of the

NMF. Simply stated, the problem defining the NMF can be
stated as follows:

Given a nonnegative matrixA ∈ Rm×n and a positive
integerk < min{m, n}, find nonnegative matricesW ∈
Rm×k andH ∈ Rk×n to minimize the functional

f(W,H) =
1

2
‖A− WH‖2

F
. (1)

The productWH is called a nonnegative matrix factor-
ization of A, althoughA is not necessarily equal to the
productWH. Although the productWH is an approxi-
mate factorization of rank at mostk, we drop the wordap-
proximatein our discussions below. The best choice for the
rank k is certainly problem dependent, and in most cases
it is usually chosen such thatk ≪ min(m, n). Hence, the
productWH can be considered acompressedform of the
data inA.

Another key characteristic of NMF is the ability of nu-
merical methods that minimize Equation (1) to extract un-
derlying features as basis vectors inW, which can then be
subsequently used for identification and classification. By
not allowing negative entries inW andH, NMF enables a
non-subtractive combination of parts to form a whole [14].
Features may be parts of faces in image data, topics or clus-
ters in textual data, or specific absorption characteristics in
hyperspectral data. The focus of this discussion is in the en-
hancement of NMF algorithms for the primary goal of fea-
ture extraction and identification in text and spectral data
mining.

Important challenges affecting the numerical minimiza-
tion of Equation (1) include the existence of local minima
due to the non-convexity off(W,H) in bothW andH.
The non-uniqueness of its solution is easily realized by not-
ing thatWDD−1H for any nonnegative invertible matrix
D whose inverse,D−1, is also nonnegative. Fortunately,
the NMF is still quite useful for text/data mining in practice
since even local minima can provide desirable data com-



pression and feature extraction and identification of both
structured and unstructured text.

Alternative formulations of the NMF problem certainly
arise in the literature. As surveyed in [2], an informa-
tion theoretic formulation in [15] is based on the Kullback-
Leibler divergence ofA from WH and the cost functions
proposed in [4] are based on Csiszár’sϕ-divergence. A for-
mulation in [21] enforces constraints based on the Fisher
linear discriminant analysis and [9] suggest using a diagonal
weight matrixQ in the factorization model,AQ ≈ WHQ,
as an attempt to compensate for feature redundancy. For
other approaches using alternative cost functions see [6] and
[10].

In order to speed up convergence of Lee and Seung’s
(standard) NMF iteration, various alternative minimization
strategies for Equation (1) have been suggested. For ex-
ample, [17] propose the use of a projected gradient bound-
constrained optimization method that presumably has bet-
ter convergence properties than the standard multiplicative
update rule approach. However, the use of certain auxil-
iary constraints in Equation (1) may break down the bound-
constrained optimization assumption and thereby limit the
use of projected gradient methods. Accelerating the stan-
dard approach via an interior-point gradient method has
been suggested in [7], and a quasi-Newton optimization ap-
proach for updatingW andH, where negative values are
replaced with small positiveǫ parameter to enforce nonneg-
ativity, is discussed in [23]. A complete overview of en-
hancements to improve the convergence of the (standard)
NMF algorithm is provided in [2].

Typically,W andH are initialized with random nonneg-
ative values to start the standard NMF algorithm. Another
area of NMF-related research has focused on alternate ap-
proaches for initializing or seeding the algorithm. The goal,
of course, is to speed up convergence. In [22] spherical
k-means clustering is used to initializeW and in [3] singu-
lar vectors ofA are used for initialization and subsequent
cost function reduction. Optimal initialization, however, re-
mains an open research problem.

1.0.1 NMF Algorithm

As surveyed in [2], there are three general classes of NMF
algorithms: multiplicative update algorithms, gradient de-
scent algorithms, and alternating least squares algorithms.
Here, we describe the most basic multiplicative update
method (initially described in [15]). This approach, based
on a mean squared error objective function, can be illus-
trated using MATLABR©array operator notation:

MULTIPLICATIVE UPDATE ALGORITHM FOR NMF

W = rand(m,k); % W initially random
H = rand(k,n); % H initially random
for i = 1 : maxiter

H = H .* (WTA) ./ (WTWH + ǫ);
W = W .* (AHT) ./ (WHHT + ǫ);

end

The parameterǫ = 10−9 is added to avoid division by zero.
As explained in [2], if this multiplicative update NMF algo-
rithm converges to a stationary point, there is no guarantee
that the stationary point is a local minimum for the objective
function. Additionally, if the limit point to which the algo-
rithm has converged lies on the the boundary of the feasible
region, we cannot conclude that it is, in fact, a stationary
point. A modification of the Lee and Seung multiplica-
tive update scheme that resolves some of the convergence
issues and guarantees convergence to a stationary point in
provided in [16].

Three additional parameters needed for the classification
of documents (by NMF) are:α, a threshold on the relevance
score or (target value)tij for documenti and anomaly/label
j; δ, a threshold on the column elements ofH, which will
filter out the association of features with both the training
(R) and test (T) documents; andσ, the percentage of docu-
ments used to define the training set (or number of columns
of R).

Preliminary Studies

As reported in [1], a rank-40 model (i.e.,k = 40) has been
successfully used to classify anomalies in the ASRS collec-
tion. By rank, we refer to the number of columns of the
feature matrix factorW used to test the NMF model (with
training documents only). TheW andH matrix factors, in
that case, were15, 722× 40 and40× 21, 519, respectively.
The percentage of ASRS documents used for training (sub-
setR) was 70% (i.e.,σ = .70). Hence,15, 063 documents
were used as the initial training set (R) and6, 456 docu-
ments were used for testing (T) the NMF classifier. Colum-
nwise pruning of the elements in the coefficient matrixH

was also tested with the settingδ = .30. This parameter
effectively determines the number of features (among the
k = 40 possible) that any document (training or test) can be
associated with. Asδ increases, so does the sparsity ofH.

Theα parameter, defined to be.40 in [1], is the predic-
tion control parameter which ultimately determines whether
or not documenti will be given label (anomaly)j, i.e.,



whetherpij = +1 or pij = −1 for the cost function

Q =
1

C

C∑

j=1

Qj, (2)

Qj = (2Aj − 1) +
1

D

D∑

i=1

qijtijpij , (3)

whereC is the number of labels (anomalies) andD is the
number of test documents. As mentioned above,D =
6, 456 in the preliminary evaluation of the NMF classifier
andC = 22. The costQ given by Equation 2 in preliminary
NMF testing would usually lie in the interval [1.28, 1.30].
To measure the quality of (anomaly) predictions across all
C = 22 categories, a Figure of Merit (FOM) score defined
by

FOM =
1

C

C∑

j=1

F − Fj

F
Qj, F =

C∑

j=1

Fj , (4)

whereFj denotes the frequency of documents having la-
bel (anomaly)j, can be generated for each experiment. By
definition, the FOM score will assign lower weights to the
higher frequency labels or categories. The best FOM score
for σ = .70 was1.267 to three significant decimal digits.
Keep in mind that the initial matrix factorsW andH are
randomly generated and will produce slightly different fea-
tures (columns ofW) and coefficients (columns ofH) per
NMF iteration1.

Recent Contest Results

For the text mining contest (sponsored by NASA Ames Re-
search Center) at the Seventh SIAM International Confer-
ence on Data Mining in Minneapolis, MN (April 26–28,
2007), all contestants were provided an additional7, 077
ASRS unclassified documents. The top three contest en-
tries in anomaly classification deployed Probabilistic Latent
Semantic Analysis (PLSA) [8], Nonnegative Matrix Factor-
ization (NMF) [1], and a Rich Document Representation
(RDR) with the traditional Vector Space Model (VSM) [13].

For the NMF classifier described in [1], thenewdocu-
ments were considered the test subsetT and the training
subsetR was defined by the previously available (classi-
fied) documents (21, 519 of them). Since all of the previ-
ously classified ASRS documents were used in the term-
by-document matrixA for the contest entry, theσ param-
eter was set to1.0. The other two parameters for the NMF
classifier were not changed, i.e.,α = 0.40 andδ = 0.30
(see Section 1.0.1). Using5 iterations andk = 40 features
for the multiplicative update algorithm mentioned in Sec-
tion 1.0.1, a cost ofQ = 1.27 (see Equation 2) was reported

1Only 5 iterations were used in the preliminary study documented in
[1].

by contest officials for the NMF classifier in mapping each
of the7, 077 test documents to any of the22 anomaly cate-
gories was1.27 (a second place finish). Had a tie occurred
among any of the cost function values generated by contest
entries, the FOM score would have been used to break it.
For the NMF classifier, the average contest FOM score was
1.22 (slightly lower than what was observed in the prelimi-
nary testing phase).

ROC Curves

Figure 1 illustrates some of the Receiver Operating Char-
acteristic (ROC) curves for the NMF classifier [1] used in
the text mining competition mentioned earlier. Although
not shown here, a comparison of graphs for the preliminary
testing and the actual contest entry reveals similar perfor-
mance for a majority of the22 anomaly classes.

Thirteen (of the twenty-two) event types (or anomaly de-
scriptions) listed in Table 1 were obtained from the Dis-
tributed National ASAP Archive (DNAA) maintained by
the University of Texas Human Factors Research Project2.
The generality of topics described in the ASRS reports of
the Noncompliance(anomaly 2),Uncommanded (loss of
control) (anomaly 10), andWeater Issue(anomaly 13) cate-
gories greatly contributed to the poorer performance of the
NMF classifier. Additional experiments with a larger num-
bers of features (k > 40) may produce an NMF model that
would better capture the diversity of contexts described by
those events. More experimentation is certainly needed.

Table 1. ROC Areas Versus DNAA Event Types
for Selected Anomalies [1]

ROC Area
Anom. DNAA Event Type Training Contest

22 Security Concern/Threat .904 .892
5 Incursion (collision hazard) .897 .871
4 Excursion (loss of control) .829 .715

21 Illness/Injury Event .820 .817
12 Traffic Proximity Event .795 .775
7 Altitude Deviation .793 .808

15 Approach/Arrival Problems .751 .672
18 Aircraft Damage/Encounter .725 .726
11 Terrain Proximity Event .723 .757
9 Speed Deviation .706 .689

10 Uncommanded (no control) .678 .650
13 Weather Issue .628 .601
2 Noncompliance (policy) .600 .555

2See http://homepage.psy.utexas.edu/HomePage/Group/HelmreichLAB.
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(a) Preliminary Training
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(b) Contest Performance

Figure 1. ROC curves for the NSF classifier
applied to anomalies (labels) 1 through 5.

1.0.2 Control Vocabulary Development

Nonnegative matrix factorization (NMF) is a viable alter-
native for automated document classification problems. As
the volume and heterogeneity of documentation continues
to grow, the ability to discern common themes and contexts
can be problematic. Current research has demonstrated that
NMF can be used to both learn and assign (anomaly) la-
bels for collections such as the Aviation Safety Reporting
System (ASRS). However, there is room for improvement
in both the performance and interpretability of the NMF. In
particular, the the summarization of anomalies (document
classes) usingk NMF features needs further work. Alter-
natives to the filtering of elements of the coefficient matrix
H (based on the parameterδ) could be the use of sparsity

or smoothing constraints (see [2]) on either (or both) factors
W andH. Of particular interest are the effects that sparsity
and/or smoothing constraints may have on the conservation
of terms/tokens ofhigh information content (e.g., larger en-
tropy global weight).

Penalty terms can be used to enforce smoothing con-
straints via the modified objective function

f(W,H) = ‖A− WH‖2

F + βJ1(W) + γJ2(H), (5)

whereJ1(W) andJ2(H) are the penalty terms introduced
to enforce certain application-dependent constraints, and
β and γ are small regularization parameters that balance
the trade-off between the approximation error and the con-
straints. Possible measures for sparsity include, for exam-
ple, theℓp norms for0 < p ≤ 1 [12] and Hoyer’s measure
[11],

sparseness(x) =

√
n − ‖x‖1/‖x‖2√

n − 1
.

The latter can be imposed as a penalty term of the form

J2(H) = (ω‖vec(H)‖2 − ‖vec(H)‖1)2, (6)

whereω =
√

kn − (
√

kn − 1)γ and vec(·) is the vec op-
erator that transforms a matrix into a vector by stacking its
columns. The desired sparseness inH is specified by set-
ting γ to a value between 0 and 1. Initial testing with both
smoothing and sparsity constraints on NMF models of the
Enron email collection [5] suggests that small control vo-
cabularies of conserved high-entropy (weighted) terms can
discern important topics in time-sensitive documents (such
as email and blog entries).
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