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1. Extended Abstract

Petascale simulations hold the promise of extraordinarily
detailed evaluation of disease, weather patterns, and other
highly complex processes. There are challenges in distribut-
ing data among processors of a system capable of petascale
computation to effectively carry out the simulation. There
are also significant challenges in building and evaluating
the simulation. In the process of building the simulation,
unexpected anomalies may arise and rapidly tracking down
all occurrences of them will enable faster, more efficient
debugging of the simulation. After extremely large scale
simulations are built, finding interesting regions in them be-
comes important [10, 7, 4, 12]. The process of browsing
the simulation to find anomalies and interesting regions can
take weeks to months. Providing tools that speed up this
process and allow simulation users to quickly find regions
of interest promises to greatly enhance the usability and sci-
entific discovery power of petascale simulations.

There are also many large-scale scientific data sets be-
ing collected. For example, it is estimated that only a small
percentage of all astronomical data is viewed by scientists.
Automated tools that could recognize interesting events and
produce lookmarks to them could be valuable tools that lead
to new discoveries. A lookmark is analogous to a bookmark
and is a link that points the user to a region of a very large
data set. Figure 1 illustrates the envisioned process of learn-
ing to produce lookmarks for very large-scale simulations.
Methods that can learn to predict lookmarks from a modest
amount of labeled data, where the training data can be in-
crementally acquired for large simulation and scientific data
sets that are time varying and have rare interesting regions
is a challenging goal for next generation learning.

Challenges are numerous and include the following.
This type of data will be highly skewed with only a small
percentage of examples that are in the (most) interest-
ing class(es). Both the interesting class(es) and the non-
interesting class(es) may be nonhomogeneous, as the class
labels correspond to a user view of the role of the examples

rather than the process that generates the examples. The
large nonhomogeneous class will typically consist of many
types of uninteresting data which themselves could be con-
sidered classes. Interesting examples may have been only
in certain time steps of the simulation, or in certain time pe-
riods of the scientific data set; e.g., the recognition of red
tides from satellite images when the red tides are intermit-
tent. It is always difficult to get people to manually label a
large amount of data for training, making semi-supervised
and active learning highly useful. For many of these types
of data sets, it is important to find the right region in a sim-
ulation, or in a body of water and so the measurement of
success is different from the overall accuracy metric used
in typical machine learning problems. Predictions may be
smoothed spatially in the data set to produce regions rather
than simply point predictions. It is important that the lift[]
or some similar metric from the predicted regions be posi-
tively evaluated.

The idea of regional accuracy requires an effective, ac-
cepted measure of overlap. It also suggests that modified
learning algorithms which can incorporate feedback from
regional error may be necessary. So, they may be predicting
from individual examples, but getting evaluated on regions
and this circle needs to be closed.

Paraview [5], a collaboration of Kitware and DOE Na-
tional Labs, is an open source visualization tool which can
be applied to very large, distributed data sets. It runs on
multiple platforms and supports distributed models. There
is a custom plug-in to allow data to be labeled to reflect its
salience.

The uninteresting data in very large data sets may be bet-
ter separated from the interesting data after clustering into
more homogeneous groups. Since it is very large data, it re-
quires scalable clustering algorithms [6, 3, 14, 11, 8]. How-
ever, there is the question of the right number of clusters,
which will require that a cluster validity metric be utilized
[13, 9]. One will want to intelligently search for a good
number of clusters. Perfection is not required since the goal
is to enhance the separability of the interesting regions only.
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Figure 1. Discovery of interesting regions using lookmarks .

Early work on finding salient regions from simulation
data has been done on a storage container being crushed.
The can data consists of as many as 443,872 labeled nodes
across 25 to 44 time steps and has between six and nine fea-
tures (depending upon the simulation). This is small enough
it can be fit in a single memory, but we want to model the
situation of a data set that has to be partitioned across mem-
ories. So, it was arbitrarily partitioned by breaking the can
into spatial regions and one example is shown in Figure 2.
Regions of interest were created by labeling a region being
crushed in a particular time step. Then a predictive model
using Random Forests [2, 1] was built on a time step(s) from
a partition and applied to discover regions in a different par-
tition. As there was access to data from four different sim-
ulations, it was possible to train on one simulation and pre-
dict regions of interest (lookmarks) in a separate simulation.
The simulations differed by the speed of the can crushing,
the number of nodes, the thickness of the bar during the
crushing, and the number of time steps.

In Figure 3 an example is shown as a predicted region of
interest in a simulation compared to the ground truth. What
is interesting is that the classifier was trained on a different
simulation that was partitioned as shown earlier (so classi-
fiers were built on each partition and all classifiers are used
to do predictions here). One can see that after smoothing
(using an averaging operator with a chosen radius) the pre-
diction is close to the ground truth. Certainly, the regional
accuracy is good here.

We have outlined the needs for next-generation data min-
ing approaches in large, skewed, time varying scientific data
sets where region recognition is important. The minimal

current work that has been done in the area indicates that
next-generation approaches may be able to provide useful
tools to scientists and engineers evaluating large-scale sim-
ulations and scientific data sets.
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Figure 2. A visualization of the data as distributed across c ompute nodes for horizontal partitions.
Four canister partitions and an impactor bar partition are s hown in different gray levels as the storage
canister is crushed. Partitions 0 to 3 in numerical order fro m top to bottom are beneath the impactor
bar in the left view.

Figure 3. Left: Ground truth as labeled in time step 15 of Simu lation 1. Center: Predicted salient re-
gions including false positives (smaller regions) before s moothing. Right: Predicted salient regions
after smoothing with no false positives.
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