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ABSTRACT
With the rapid development of computer and information
technology in the last several decades, an enormous amount
of data in science and engineering has been and will con-
tinuously be generated in massive scale, either being stored
in gigantic storage devices or flowing into and out of the
system in the form of data streams. Moreover, such data
has been made widely available, e.g., via the Internet. Such
tremendous amount of data, in the order of tera- to peta-
bytes, has fundamentally changed science and engineering,
transforming many disciplines from data-poor to increas-
ingly data-rich, and calling for new, data-intensive methods
to conduct research in science and engineering.

In this paper, we discuss the research challenges in science
and engineering, from the data mining perspective, with a
focus on the following issues: (1) information network analy-
sis, (2) discovery, usage, and understanding of patterns and
knowledge, (3) stream data mining, (4) mining moving object
data, RFID data, and data from sensor networks, (5) spa-
tiotemporal and multimedia data mining, (6) mining text,
Web, and other unstructured data, (7) data cube-oriented
multidimensional online analytical mining, (8) visual data
mining, and (9) data mining by integration of sophisticated
scientific and engineering domain knowledge.

1. INTRODUCTION
It has been popularly recognized that the rapid develop-

ment of computer and information technology in the last
twenty years has fundamentally changed almost every field
in science and engineering, transforming many disciplines
from data-poor to increasingly data-rich, and calling for the
development of new, data-intensive methods to conduct re-
search in science and engineering. Thus the new terms like,
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data science [13] or data engineering, can be used to best
characterize the data-intensive nature of today’s science and
engineering.

Besides the further development of database methods to
efficiently store and manage peta-bytes of data online, mak-
ing these archives easily and safely accessible via the Inter-
net and/or a computing grid, another essential task is to
develop powerful data mining tools to analyze such data.
Thus, there is no wonder that data mining has also entered
on to the center stage in science and engineering.

Data mining, as the confluence of multiple intertwined
disciplines, including statistics, machine learning, pattern
recognition, database systems, information retrieval, World-
Wide Web, visualization, and many application domains, has
made great progress in the past decade [15]. To ensure that
the advances of data mining research and technology will
effectively benefit the progress of science and engineering, it
is important to examine the challenges on data mining posed
in data-intensive science and engineering and explore how to
further develop the technology to facilitate new discoveries
and advances in science and engineering.

2. MAJOR RESEARCH CHALLENGES
In this section, we will examine the major challenges raised

in science and engineering from the data mining perspective,
and examine the promising research directions.

2.1 Information network analysis
With the development of Google and other effective web

search engines, information network analysis has become an
important research frontier, with broad applications, such
as social network analysis, web community discovery, ter-
rorist network mining, computer network analysis, and net-
work intrusion detection. However, information network
research should go beyond explicitly formed, homogeneous
networks (e.g., web page links, computer networks, and ter-
rorist e-connection networks) and delve deeply into implic-
itly formed, heterogeneous, and multidimensional informa-
tion networks. Science and engineering provide us with rich
opportunities on exploration of networks in this direction.

There are a lot of massive natural, technical, social, and
information networks in science and engineering applica-
tions, such as gene/protein/microarray networks in biol-
ogy, highway transportation networks in civil engineering,
topic/theme-author-publication-citation networks in library
science, wireless telecommunication networks among com-
manders, soldiers and supply lines in a battle field. In such
information networks, each node or link in a network con-



tains valuable, multidimensional information, such as tex-
tual contents, geographic information, traffic flow, and other
properties. Moreover, such networks could be highly dy-
namic, evolving, and inter-dependent.

Although a single link in a network could be noisy, unreli-
able, and sometimes misleading, valuable knowledge can be
mined reliably among a large number of links in a massive
information network. Our recent studies on information net-
works show that the power of such links in massive informa-
tion networks should not be underestimated. They can be
used for predictive modeling across multiple relations [30],
for user-guided clustering across multiple relations [31], for
effective link-based clustering [16, 32], for distinguishing dif-
ferent objects with identical names [33] and for solving the
veracity problem, i.e., finding reliable facts among multiple
conflicting web information providers [34]. The power of
such links should be thoroughly explored in many scientific
domains, such as in protein network analysis in biology and
in the analysis of networks of research publications in library
science as well as in each science/engineering discipline.

Another important direction in information network analy-
sis is to treat information networks as graphs and further
develop graph mining methods [8, 29]. Recent progress on
graph mining and its associated structural pattern-based
classification and clustering, graph and graph containment
indexing, and similarity search will play an important role in
information network analysis. Moreover, since information
networks often form huge, multidimensional heterogeneous
graphs, mining noisy, approximate, and heterogeneous sub-
graphs based on different applications for the construction of
application-specific networks with sophisticated structures
will help information network analysis substantially. The
use of the power law distribution of many information net-
works and the rules on density evolution of information net-
works will help reduce computational complexity and en-
hance to power of network analysis. Finally, the study of
link analysis, heterogeneous data integration, user-guided
clustering, user-based network construction, will provide es-
sential methodology for the in-depth study in this direction.

2.2 Discovery, understanding, and usage of pat-
terns and knowledge

Scientific and engineering applications often handle mas-
sive data of high dimensionality. Pattern analysis can be a
valuable tool for finding correlations, clusters, classification
models, sequential and structural patterns, and outliers.

Frequent pattern mining has been a focused theme in data
mining research for over a decade [14]. Abundant litera-
ture has been dedicated to this research, and tremendous
progress has been made, ranging from efficient and scalable
algorithms for frequent itemset mining in transaction data-
bases to numerous research frontiers, such as sequential pat-
tern mining, structural pattern mining, correlation mining,
associative classification, and frequent-pattern-based clus-
tering, as well as their broad applications.

Recently, studies have proceeded to scalable methods for
mining colossal patterns [35] where the size of the patterns
could be rather large so that the step-by-step growth us-
ing an Apriori-like approach does not work, methods for
pattern compression, extraction of high-quality top-k pat-
terns [28], and understanding patterns by context analysis
and generation of semantic annotations [22]. Moreover, fre-
quent patterns have been used for effective classification by

top-k rule generation for long patterns and discriminative
frequent pattern analysis [7]. Frequent patterns have also
been used for clustering of high-dimensional biological data
[26]. Moreover, much research has been done on effective
sequential and structural pattern mining methods and the
exploration of their applications [14, 8].

The promotion of effective application of pattern analysis
methods in scientific and engineering applications is an im-
portant task in data mining. Moreover, it is important to
further develop efficient methods for mining long, approxi-
mate, compressed, and sophisticated patterns for advanced
applications, such as mining biological sequences and net-
works and mining patterns related to scientific and engi-
neering processes. Furthermore, the exploration of mined
patterns for classification, clustering, correlation analysis,
and pattern understanding will still be interesting topics in
research.

2.3 Stream data mining
Stream data refers to the data that flows into and out of

the system like streams. Stream data is usually in vast vol-
ume, changing dynamically, possibly infinite, and containing
multi-dimensional features. Typical examples of such data
include audio and video recording of scientific and engineer-
ing processes, computer network information flow, web click
streams, and satellite data flow. Such data cannot be han-
dled by traditional database systems, and moreover, most
systems may only be able to read a data stream once in
sequential order. This poses great challenges on effective
mining of stream data.

With substantial research [1], progress has bee made on ef-
ficient methods for mining frequent patterns in data streams,
multidimensional analysis of stream data (such as construc-
tion of stream cubes), stream data classification, stream
clustering, stream outlier analysis, rare event detection [10],
and so on. The general philosophy is to develop single-scan
algorithms to collect information about stream data in tilted
time windows, exploring micro-clustering, limited aggrega-
tion, and approximation. For skewed distribution of stream
data, it is recommended to explore biased selective sampling
and robust emsemble methods in model construction [10].

Stream data is often encountered in science and engineer-
ing applications. It is important to explore stream data
mining in such applications and develop application-specific
methods, e.g., real-time anomaly detection in computer net-
work analysis, in electric power grid supervision, in weather
modeling, in engineering and security surveillance, and other
stream data applications.

2.4 Mining moving object data, RFID data,
and data from sensor networks

With the popularity of sensor networks, GPS, cellular
phones, other mobile devices, and RFID technology, tremen-
dous amount of moving object data has been collected, call-
ing for effective analysis. This is especially true in many
scientific, engineering, business and homeland security ap-
plications.

Interesting research has been conducted on warehousing
and mining RFID data sets [11], detection of strange mov-
ing objects [19], clustering trajectory data [17], and mining
traffic data for route planning [12]. However, this is still
a young field with many research issues to be explored on
mining moving object data, RFID data, and data from sen-
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sor networks. For example, how to explore correlation and
regularity to clean noisy sensor network and RFID data,
how to integrate and construct data warehouses for such
data, how to perform scalable mining for peta-byte RFID
data, how to find strange moving objects, how to classify
multidimensional trajectory data, and so on. With time, lo-
cation, moving direction, speed, as well as multidimensional
semantics of moving object data, likely multi-dimensional
data mining will play an essential role in this study.

2.5 Spatial, temporal, spatiotemporal, and mul-
timedia data mining

Scientific and engineering data is usually related to space,
time, and in multimedia modes (e.g., containing color, im-
age, audio, and video). With the popularity of digital pho-
tos, audio DVDs, videos, YouTube, web-based map services,
weather services, satellite images, digital earth, and many
other forms of multimedia, spatial, and spatiotemporal data,
mining spatial, temporal, spatiotemporal, and multimedia
data will become increasingly popular, with far-reaching im-
plications [23, 24]. For example, mining satellite images may
help detect forest fire, find unusual phenomena on earth,
predict hurricane landing site, discover weather patterns,
and outline global warming trends.

Research in this domain needs the confluence of multi-
ple disciplines including image processing, pattern recogni-
tion, geographic information systems, parallel processing,
and statistical data analysis. Automatic categorization of
images and videos, classification of spatiotemporal data, find-
ing frequent/sequential patterns and outliers, spatial collo-
cation analysis, and many other tasks have been studied
popularly. With the mounting of such data, the development
of scalable analysis methods and new data mining functions
will be an important research frontier for years to come.

2.6 Mining text, Web, and other unstructured
data

Web is the common place for scientists and engineers to
publish their data, share their observations and experiences,
and exchange their ideas. There is a tremendous amount of
scientific and engineering data on the web. For example,
in biology and bioinformatics research, there are GenBank,
ProteinBank, GO, PubMed, and many other biological or
biomedical information repositories available on the Web.
Therefore, the Web has become the ultimate information
access and processing platform, housing not only billions
of link-accessed “pages”, containing textual data, multime-
dia data, and linkages, on the surface Web, but also query-
accessible “databases” on the deep Web. With the advent of
Web 2.0, there is an increasing amount of dynamic “work-
flow” emerging. With its penetrating deeply into our daily
life and evolving into unlimited dynamic applications, the
Web is central in our information infrastructure. Its virtu-
ally unlimited scope and scale render immense opportunities
for data mining.

Text mining and information extraction have been applied
not only to Web mining but also to the analysis of other
kinds of semi-structured and unstructured information, such
as digital libraries, biological information systems, research
literature analysis systems, computer-aided design and in-
struction, and office automation systems.

There are lots of research issues in this domain [4, 20],
which takes collaborative efforts of multiple disciplines, in-

cluding information retrieval, databases, data mining, nat-
ural language processing, and machine learning. For many
scientific and engineering applications, the data is somewhat
structured and semi-structured, with designated fields for
text and multimedia data. Thus it is possible to mine and
build relatively structured web repositories. Some promis-
ing research topics include heterogeneous information in-
tegration, information extraction, personalized information
agents, application-specific partial Web construction and
mining, in-depth Web semantics analysis, development of
scientific and engineering domain-specific semantic Webs,
and turning Web into relatively structured information-base.

2.7 Data cube-oriented multidimensional on-
line analytical mining

Scientific and engineering datasets are usually high-dimen-
sional in nature. Viewing and mining data in multidimen-
sional space will substantially increase the power and flexi-
bility of data analysis. Data cube computation and OLAP
(online analytical processing) technologies developed in data
warehouse have substantially increased the power of multi-
dimensional analysis of large datasets. Besides traditional
data cubes, there are recent studies on construction of re-
gression cubes [6], prediction cubes [5], and other scalable
high-dimensional data analysis methods [18]. Such multi-
dimensional, especially high-dimensional, analysis tools will
ensure data can be analyzed in hierarchical, multidimen-
sional structures efficiently and flexibly at user’s finger tips.
This leads to the integration of online analytical processing
with data mining, i.e., OLAP mining.

We believe that OLAP mining will substantially enhance
the power and flexibility of data analysis and lead to the
construction of easy-to-use tools for the analysis of massive
data with hierarchical structures in multidimensional space.
It is a promising research field for developing effective tools
and scalable methods for exploratory-based scientific and
engineering data mining.

2.8 Visual data mining
A picture is worth a thousand words. There have been nu-

merous data visualization tools for visualizing various kinds
of data sets in massive amount and of multidimensional
space [25]. Besides popular bar charts, pie charts, curves,
histograms, quantile plots, quantitle-quantile plots, boxplots,
scatter plots, there are also many visualization tools using
geometric (e.g., dimension stacking, parallel coordinates),
hierarchical (e.g., treemap), and icon-based (e.g., Chernoff
faces and stick figures) techniques. Moreover, there are
methods for visualizing sequences, time-series data, phylo-
genetic trees, graphs, networks, web, as well as various kinds
of patterns and knowledge (e.g., decision-trees, association
rules, clusters and outliers) [9]. There are also visual data
mining tools that may facilitate interactive mining based
on user’s judgement of intermediate data mining results [2].
Recently, we have developed a DataScope system that maps
relational data into 2-D maps so that multidimensional re-
lational data can be browsed in Google map’s way [27].

We believe that visual data mining is appealing to sci-
entists and engineers because they often have good under-
standing of their data, can use their knowledge to inter-
pret their data and patterns with the help of visualization
tools, and interact with the system for deeper and more ef-
fective mining. Tools should be developed for mapping data
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and knowledge into appealing and easy-to-understand visual
forms, and for interactive browsing, drilling, scrolling, and
zooming data and patterns to facilitate user exploration.
Finally, for visualization of large amount of data, parallel
processing and high-performance visualization tools should
be investigated to ensure high performance and fast response.

2.9 Domain-specific data mining: Data min-
ing by integration of sophisticated scien-
tific and engineering domain knowledge

Besides general data mining methods and tools for science
and engineering, each scientific or engineering discipline has
its own data sets and special mining requirements, some
could be rather different from the general ones. Therefore,
in-depth investigation of each problem domain and develop-
ment of dedicated analysis tools are essential to the success
of data mining in this domain. Here we examine two prob-
lem domains: biology and software engineering.

Biological data mining
The fast progress of biomedical and bioinformatics re-

search has led to the accumulation and publication (on the
web) of vast amount of biological and bioinformatics data.
However, the analysis of such data poses much greater chal-
lenges than traditional data analysis methods [3]. For exam-
ple, genes and proteins are gigantic in size (e.g., a DNA se-
quence could be in billions of base pairs), very sophisticated
in function, and the patterns of their interactions are largely
unknown. Thus it is a fertile field to develop sophisticated
data mining methods for in-depth bioinformatics research.
We believe substantial research is badly needed to produce
powerful mining tools in many biological and bioinformat-
ics subfields, including comparative genomics, evolution and
phylogeny, biological data cleaning and integration, biologi-
cal sequence analysis, biological network analysis, biological
image analysis, biological literature analysis (e.g., PubMed),
and systems biology. From this point view, data mining is
still very young with respect to biology and bioinformatics
applications. Substantial research should be conducted to
cover the vast spectrum of data analysis tasks.

Data mining for software engineering
Software program executions potentially (e.g., when pro-

gram execution traces are turned on) generate huge amounts
of data. However, such data sets are rather different from
the datasets generated from the nature or collected from
video cameras since they represent the executions of pro-
gram logics coded by human programmers. It is important
to mine such data to monitor program execution status, im-
prove system performance, isolate software bugs, detect soft-
ware plagiarism, analyze programming system faults, and
recognize system malfunctions.

Data mining for software engineering can be partitioned
into static analysis and dynamic/stream analysis, based on
whether the system can collect traces beforehand for post-
analysis or it must react at real time to handle online data.
Different methods have been developed in this domain by
integration and extension of the methods developed in ma-
chine learning, data mining, pattern recognition, and sta-
tistics. For example, statistical analysis such as hypothesis
testing) approach [21] can be performed on program execu-
tion traces to isolate the locations of bugs which distinguish
program success runs from failing runs. Despite of its limited
success, it is still a rich domain for data miners to research

and further develop sophisticated, scalable, and real-time
data mining methods.

3. CONCLUSIONS
Science and engineering are fertile lands for data mining.

In the last two decades, science and engineering have evolved
to a stage that gigantic amounts of data are constantly be-
ing generates and collected, and data mining and knowledge
discovery becomes the essential scientific discovery process.
We have proceeded to the era of data science and data en-
gineering.

In this paper, we have examined a few important research
challenges in science and engineering data mining. There
are still several interesting research issues not covered in
this short abstract. One such issue is the development of in-
visible data mining functionality for science and engineering
which builds data mining functions as an invisible process
in the system (e.g., rank the results based on the relevance
and some sophisticated, preprocessed evaluation functions)
so that users may not even sense that data mining has
been performed beforehand or is being performed and their
browsing and mouse clicking are simply using the results of
or further exploring of data mining. Another research issue
is privacy-preserving data mining that aims to performing
effective data mining without disclosure of private or sen-
sitive information to outsiders. Finally, knowledge-guided
intelligent human computer interaction based on the knowl-
edge extracted from data could be another interesting issue
for future research.
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