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Abstract 
 

I provide a brief introduction to grid computing and 

outline the current state of the art in grid technology and 

applications. I also outline directions that I see as 

important for future development, paying particular 

attention to issues relating to data. I make the case that 

both grid and data mining researchers have (or should 

have) much in common, as both are ultimately concerned 

with enabling distributed communities to function 

effectively as they tackle complex and often data-rich 

problems. 

 

 

1. Introduction 
 

What do grid and data mining have in common? At one 

level, nothing: grid is concerned with distributed system 

architecture and protocols; data mining with algorithms 

for extracting knowledge from data. But at another level, 

there are intimate connections: grid is concerned with 

enabling large-scale collaborative problem solving, in 

which data is frequently a major component; meanwhile, 

the data to which data mining is applied is often large, 

distributed, and contributed by many participants, and 

thus data mining, writ large, is, like grid, an end-to-end, 

systems problem. For these reasons, I believe that the two 

communities have in fact much in common, and much to 

gain from closer collaboration. 

To explore some of these connections, I provide a brief 

introduction to grid computing and the state of the art in 

grid technology and applications. I also outline directions 

that I see as important for future development, paying 

particular attention to issues relating to data. 

 

2. Historical Notes on Grid 
 

Part of what makes computer science so interesting is 

the need periodic seismic shifts in focus that occur due to 

exponential changes in key system parameters. While such 

changes do not alter fundamental principles or physical 

laws, they create opportunities for new applications and/or 

expose new technological challenges. Thus, for example, 

those working in parallel computing observe that every 

order of magnitude increase in processor count raises new 

issues in system architecture, and as Kleinrock observed, 

“Gigabit networks are really different” [31], as are 

petabyte datasets [28]. 

The ideas, technologies, infrastructures, and 

applications to which the label “grid” is applied arose in 

response to one of those periodic re-evaluations of what is 

possible. In the 1990s, early high-speed networks led 

enthusiasts to examine how those networks could be used 

to integrate end systems to provide new functionality and 

enable new high-performance applications [10, 12, 29]. It 

then became clear that new applications could benefit 

from uniform, reliable, and performant mechanisms for 

authentication, authorization, resource discovery, data 

movement, and the like. Thus we saw efforts focused on 

developing such mechanisms and on using them to realize 

increasingly ambitious application scenarios.  

The term “grid” was proposed and adopted for the 

resulting infrastructure, by loose analogy with the power 

grid [19]. However, it was clear from the beginning that 

the scope was more than simply “computing as a utility.” 

Study of early applications led to a recognition that grid 

technologies, applications, and infrastructures were 

concerned more generally with “flexible, secure, 

coordinated resource sharing among dynamic collections 

of individuals, institutions, and resources—what we refer 

to as virtual organizations” [24]. 

 

3. State of the Art 
 

Grid technologies have moved beyond the research and 

demonstration phase and are being applied on large 

scales, although substantial research and development also 

continues. These technologies are increasingly, also, being 

applied to problems involving the management and 

analysis of large quantities of data.  

First-generation grids, pioneered by the high energy 

physics community, have been successful in federating 

computing resources across many sites to provide surge 

capacity to participants. For example, the US-based Open 

Science Grid (OSG) [38] and the European Union’s 



Enabling Grids for eScience (EGEE) infrastructure [1] run 

tens of thousands of jobs per day. 

Second-generation grids emphasize the delivery of data 

and software as services, the federation of services to meet 

community needs, and the construction of infrastructures 

designed to host services. Examples include the Earth 

System Grid [8], which provides access to large quantities 

of climate simulation data (more than 100 TB downloaded 

in 2006); the cancer Biomedical Informatics Grid (caBIG) 

[37], which encompasses data and analysis services at 

dozens of cancer centers across the US; and the 

Biomedical Informatics Research Network (BIRN) [16], 

which links biomedical research centers. Virtual 

observatories [42] are another success story, linking 

digital sky surveys across the globe. 

Numerous other examples of large-scale Grid 

deployments exist in the US, Europe, and Asia. The Open 

Grid Forum serves as a meeting place for participants in 

many of these projects.  

Driven by these developments, grid technologies have 

evolved substantially since the early 1990s. Widely 

adopted architectural principles provide for the use of 

public key infrastructure (PKI) credentials (and more 

recently, SAML assertions) as a basis for authentication 

and authorization, standardized schema for resource 

description, Web Services protocols for resource 

discovery and access, and so forth. The adoption of 

“industry standard” Web Services technologies as a 

foundation for grid protocols has been mostly positive, 

although standards wars have slowed availability of 

standard tooling.  Progress on standardization of higher-

level protocols has been less rapid, but some useful 

progress has been made: for example, the GridFTP and 

Storage Resource Manager (SRM) specifications. 

Widely used distributed data management software 

includes GridFTP [4] for data movement; Data Access 

and Integration Services (DAIS) for access to structured 

data [6]; SRM [41]; and the Storage Resource Broker [7]. 

These components are linked with standardized 

authentication and authorization infrastructures [23] that 

allow large communities to control who can access what 

resources and services. One example of a data-intensive 

system constructed with these components is the LIGO 

Data Grid, which streams more than one terabyte of data 

per day from the LIGO gravitational wave observatory to 

eight sites around the world [13]. 

To date, open source software has been a bigger force 

for adoption than standards. The open source Globus 

Toolkit version 4 [18], which includes several of the 

components listed above, has seen broad adoption 

worldwide, with contributors from the US, Europe, and 

Asia. In Europe, European Union pressure for “European 

solutions” has led to the development of several different 

systems, including ExtreemOS [30], gLite [2], NorduGrid 

[15], OMII [3], and Unicore [40]. 

4. Future Directions 
 

I mention here several directions that I think are 

important for the future. Whether they can be viewed as 

aspects of grid, data mining, or something else is open to 

debate, but I do believe that they are important! Some of 

this material is taken from another recent article [20]. 

I referred above to the important role that service-

oriented architecture is already playing in certain 

science communities. Much work is needed on such issues 

as description and discovery, provenance and trust, and 

provisioning and scheduling in order to scale these 

approaches to larger scales. 

One important goal must be to enable a separation of 

concerns and responsibilities between those who operate 

the physical resources that host services, those who 

construct services, and those who access services [21]. 

The US TeraGrid infrastructure [11] is pursuing this 

agenda via its “science gateways” program. This 

separation is also a major concern in industry: commercial 

providers of utility computing services such as Amazon’s 

EC2 provide computing services at relatively low costs. It 

will be interesting to see who will ultimately become the 

primary suppliers of computational and storage resources. 

Provenance is an important issue to address in a 

substantial and principled manner. Progress in science 

depends on one researcher’s ability to build on the results 

of another. “Service oriented science” can make it far 

easier, from a mechanical perspective, for researchers to 

do just this, by using service invocations to perform data 

access, comparison, and analysis tasks that might 

previously have required manual literature searches, data 

analyses, and/or physical experiments. However, the 

results of these activities are only useful when published if 

other researchers can determine how much credence to put 

in the results on which they build, and in turn convince 

their peers that their results are credible. Ultimately we 

will need to automate these processes. 

These observations have motivated growing interest in 

methods for recording the provenance of computational 

results. Initial work focused on databases [9, 44], but 

interest has broadened to encompass arbitrary 

computations [25, 33]. A series of workshops [34] have 

led to the formulation of a provenance challenge [35], in 

which many groups have participated. Approaches 

explored include the use of functional scripting languages 

to express application tasks [45], file system 

instrumentation [36], and the use of a general-purpose 

provenance store [33]. 

Another area of considerable current interest in the grid 

community concerns the methods used to specify and 

execute large computations involving many loosely 

coupled activities. Such computations arise, for example, 

in large-scale data analyses and parameter studies. 



Considerable progress has been made, to the extent that it 

is now common to see computations involving tens of 

thousands of tasks and operating on terabytes of data 

running efficiently on both large supercomputers and 

distributed grids comprising multiple clusters. Examples 

of technologies used for this purpose include Condor [32], 

Pegasus [14], and Swift [46]. Work is required to 

integrate such computations into community workflows.  

Research occurs within communities, and the 

formation and operation of communities can be 

facilitated by appropriate technology. Much progress has 

been made in defining relevant protocols, practices, and 

systems—progress to which the grid community has 

contributed, via for example its work on authorization 

architectures [17, 43]. However, many challenges remain. 

For example, mechanisms that work effectively for two or 

ten participants may not scale effectively to one thousand 

or one million—not necessarily because implementations 

cannot handle the number of entities involved, but 

because softer issues such as trust, shared vocabulary, and 

other implicit knowledge break down as communities 

extend beyond personal connections.   

One approach to solving some scaling problems is to 

build infrastructures that allow clients to associate 

arbitrary metadata (“assertions”) with data and services. 

Assuming that we can also determine whether such 

assertions can be trusted (perhaps on the basis of digital 

signatures, and/or yet other assertions), consumers can 

then make their own decisions concerning such properties 

as quality, provenance, and accuracy. Systems such as 

Wikipedia and the Flickr and Connotaea collaborative 

tagging systems [26] demonstrate the advantages, costs, 

and pitfalls of different approaches to building such 

community knowledge bases. 

Provisioning and scheduling become important as 

services and data increase in popularity [5]. Large central 

facilities, such as those operated by national centers and 

commercial providers, will surely continue to be 

important. However, it may also be feasible to exploit 

distributed resources, in cases where popularity allows us 

to justify the high cost of migrating data [27]. To this end, 

we are exploring methods that diffuse popular data “into 

the grid” as popularity increases [39]. 

 

5. Summary 
 

Both grid and data mining researchers seek to enhance 

the abilities of individuals and communities to solve 

complex problems. In pursuing this goal, we need to take 

a system-level [22] view, in which we study and seek 

opportunities for optimization in every aspect of the 

problem solving process, not only by the individual 

researcher or within an individual laboratory, but also 

within and across communities.  

For example, we may determine that (as I have argued 

here) service oriented architectures can be used to 

distribute and thus accelerate the processes of publishing, 

discovering, and accessing relevant data and software; that 

the encoding of provenance information can facilitate the 

reuse of data; and that software support for building 

communities can promote the collaborative development 

of knowledge. Many other opportunities to facilitate 

distributed problem solving (whether data-intensive or 

otherwise) can easily be identified. 

In examining these issues, I have focused on the 

concerns of scientists and science. Scientists are certainly 

not alone in grappling with these issues. However, science 

is perhaps unique in the scope and scale of its problems 

and the subtlety of the questions that the methods 

discussed here can be used to answer. We may expect that 

methods developed for science can find application 

elsewhere, even as scientists look increasingly to 

computer science and information technology for tools 

that maximize the time that they spend thinking. 

Looking forward, there is much to be gained from grid 

and data mining researchers making common cause, due 

to their common interest in these and other topics.  
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