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Abstract 
  

TCGR is a new method for analyzing DNA/RNA 

sequences by pattern distribution and for assessing 

similarity between multiple sequences. Previous 

approaches to analyzing DNA sequences ignore the 

temporal distribution drifts that occur along the 

DNA/RNA sequence.  We argue for the development 

of innovative techniques to analyze sequences.  We 

feel strongly that these approaches must involve a 

visualization component and be tied to new similarity 

techniques to aid in motif identification.  DNA 

sequence investigation is a fuzzy classification 

problem.  That is, two DNA strands may be slightly 

different in both length and structure, yet serve the 

same biological function.   

 

1. Introduction 
 

The examination of DNA/RNA sequences has 

been an area of strong research by biologists, 

computer scientists, and statisticians.  Historically, 

comparative genomics has placed more focus on 

those components of the genome that are conserved 

between distant species.  In contrast, the recent 

completion of the chimpanzee genome sparked new 

interest in identifying non-conserved genomic 

differences between closely related species, such as 

chimps and humans.  Alignment of the chimp and 

human genomes reveals an overall identity of greater 

than 98.8% [1], but the divergent 1.2% still translates 

into tens of millions of differences given the 30 

billion base pair content of these genomes.  We assert 

that some of the key non-conserved differences 

between chimps and human biology are due to 

species-specific miRNAs and targets that direct key 

behavioral and physiological differences.  Micro-

RNAs (miRNA) are short non-coding RNA sequences 

that have been shown to regulate gene expression.  

Recent studies on the basic structure of miRNA 

sequences, target sites, and pre-miRNA sequences 

intimate that there is something unique about the 

overall 3-dimensional fold of the polynucleotide 

structure that is key to miRNA biogenesis and target-

site function [2].   However, simple sequence 

conservation and alignment is not sufficient to predict 

the existence of new animal miRNAs and thus new 

algorithms must be developed that are capable of 

‘capturing’ subtle sequence composition, frequency, 

distribution, and other features that impact RNA 

folding and the potential to act as a miRNA.  

The initial focus of our DNA/RNA sequence 

research is on miRNA visualization and prediction.  

However the scalability and universality of our 

approach is such that it is applicable to other 

sequence investigation applications.  The algorithms 

themselves are generic.  They learn what the 

DNA/RNA structure is from provided training data 

(using the wealth of information already uncovered 

about miRNAs).  

 

2. Overview of TCGR 
 

The original application of Chaos Game 

Representation (CGR) to visualize DNA nucleotide 

distributions and sequences first appeared in 1990 

[3]. The Frequency CGR (FCGR) shows the 

frequencies of oligonucleotides using a color scheme 

normalized to the distribution of frequency of 

occurrence of associated patterns.  The FCGR was 

first investigated by Deschavanne in 1999 [4].  

Our contribution centers around a novel 

visualization approach that captures temporal 

nucleotide  distribution shifts that occur along the 

length of DNA/RNA.  TCGR (Temporal Chaos 

Game Representation) is an innovative approach to 

analyzing and visualizing DNA sequence data that 

involves creating a generalized overview of the 

content of a set of sequences [5]. Unlike other 

algorithms that are dependant on the exact order of 



nucleotides, TCGR shows the structure of the data set 

by showing the distribution of short nucleotide 

patterns along the length of the data set. Proximity of 

the subsequences is more important in TCGR than 

exact order. The nucleotide subpatterns are counted 

in all sequences in a sliding window of fixed length 

that moves down the data set, generating a row of 

data each time it shifts. TCGR can also be used to 

show the overall structure of sets of sequences and is 

not strongly affected by insertions, deletions, or 

SNPs (single nucleotide polymorphims) contained in 

related sequences. Each of the parameters supplied to 

the TCGR algorithm has a significant effect on the 

output.  

 

3. Visualization Algorithm 

  
To produce a TCGR for a set of one or more DNA 

sequences, a sliding window is used to count sub-

patterns, which are referred to as subsequences. The 

window has a fixed length and starts at the beginning 

of the sequence set. Within the window, all 

subsequences of a specified, fixed length are counted 

and tallied for all sequences. Once counting is 

complete within a window, the window is moved 

down by an offset specified by the degree of window 

overlap. The counting process is repeated, and the 

window continues to move down the data set until it 

either reaches the end or is only partially filled 

(extending beyond the end of the data set).  

When counting is finished, a 2-D matrix of integer 

values will have been formed, with one row 

representing a window and each column representing 

the counts for a specific sub-pattern. The maximum 

count value is found for the data set, or the user 

supplies a maximum value, and all cells are divided 

by that value to produce a matrix of frequencies. 

The matrix of frequencies is visualized using a 

color scheme or grayscale gradient to represent 

frequencies on a scale of 0.0 to 1.0 (Figure 1).  The 

simplest scheme is to use grayscale frequency 

conversions where 0.0 is white and 1.0 is black.  An 

alternative that makes hot/cold spots more visible is 

to use a color scheme where 0.0 is white, 0.50 is blue, 

and 1.0 is red (Table 1).  

TCGR does not consider the order of the 

subsequences as they are represented in columns. We 

have analyzed data with the convention that the 

columns for single nucleotides will correspond to A, 

C, G, and T in that order. For subsequences of size 

two, the columns will be in the order of AA, AC, 

AG, AT, CA, CC, …, TT. This pattern is used for all 

subsequence sizes. 

 

3.1. Effects of Parameters and Alignment 

 
 The properties of TCGR visualization make it a 

novel method of analyzing DNA sequences, since the 

data is analyzed in sections rather than as a 

continuous string and the analysis method can be 

applied to both single sequences and sets of multiple 

sequences. The visualization process enables the easy 

identification of distribution differences along the 

sequence, particularly when the data is aligned prior 

to applying TCGR. Applications of TCGR include 

the identification of CG-islands, motifs, and binding 

sites.    

The effects of subsequence size, window length, 

manual scaling, and window overlap, as well as the 

interaction between some of these parameters can 

cause large differences in TCGR output. 

Additionally, results can be affected and improved 

using sequence alignment algorithms, and by 

choosing subsequence sizes and a window length 

suitable for the data set. Changes in the parameters 

and the use of alignment can lead to more accurate 

data representation, but if improperly applied, can 

also distort or over-simplify the data.  

 

 

Figure 1. A small data set of two sequences is Figure 1. A small data set of two sequences is Figure 1. A small data set of two sequences is Figure 1. A small data set of two sequences is 
analyzed with a sliding window (a) converted to analyzed with a sliding window (a) converted to analyzed with a sliding window (a) converted to analyzed with a sliding window (a) converted to 
counts (b), then frequencies (c), and finally a counts (b), then frequencies (c), and finally a counts (b), then frequencies (c), and finally a counts (b), then frequencies (c), and finally a 
TCGR (d).TCGR (d).TCGR (d).TCGR (d).    

Color Schemes for TCGR VisualizationColor Schemes for TCGR VisualizationColor Schemes for TCGR VisualizationColor Schemes for TCGR Visualization    
FrequencyFrequencyFrequencyFrequency    ColorColorColorColor    Grayscale Grayscale Grayscale Grayscale     
0.00 White White 
0.50 Blue Gray (50%) 
1.00 Red Black 
Table 1. Two simple color schemes for Table 1. Two simple color schemes for Table 1. Two simple color schemes for Table 1. Two simple color schemes for 
representing data in TCGR.representing data in TCGR.representing data in TCGR.representing data in TCGR.    



3.2. Subsequence Size 
 

Increasing the subsequence size, n, increases the 

number of columns by 4n. Larger subsequence sizes 

also cause the output to become sparser for constant 

window lengths (Figure 2). Increased sparseness in 

the data is due partly to the fact that there are fewer 

opportunities to record larger subsequences within a 

window than smaller subsequences, and longer 

subsequences also have a lower probability of 

occurring in the same abundance as smaller ones. 

Hotspots become isolated and easier to identify in 

certain subsequence size ranges depending on the 

sequences and the window length used. Since hotspot 

distribution and the width of the TCGR are affected 

with larger subsequence sizes, keeping a constant 

subsequence size when comparing data sets is 

necessary.  

 

 

3.3. Maximum Count Value 
 

After the initial counting of subsequences has 

taken place, the integer counts are converted to 

frequency values based on either the largest count 

contained in the data set or a user-supplied value 

greater than or equal to that. The effect of supplying a 

maximum count value is manual scaling of the 

frequencies. When comparing data sets with the same 

number of sequences for hot spots, manual scaling 

should be used such that the counts are subjected to 

the same maximum value when converted to 

frequencies. If comparing for general structure, 

manual scaling may not be necessary, especially if 

output from a single sequence is compared to the 

output from a large set of multiple sequences. 

However, when comparing two same-size sets, not 

using manual scaling may not give an accurate idea 

of the degree of similarity between the two sets.  

 

3.4. Window Length 
 

For a constant subsequence size and with maximal 

window overlap, as window length increases, the data 

becomes denser (Figure 3). The window length to 

subsequence size becomes important since changing 

the ratio causes hot spots and cold spots to appear 

with different intensity. With small window lengths, 

hotspots will stand out, but cold spots may not be as 

meaningful. More hotspots may appear with higher 

window length to subsequence size ratios.  

 

 

3.5. Window Overlap 
 

When window overlap is maximized such that the 

window only moves by one nucleotide each time, 

adjacent windows will show redundant data. This 

redundancy may be removed by decreasing the 

amount of window overlap, but this should be done 

with caution. The degree of overlap present between 

windows is also an important parameter, because 

decreasing the overlap between windows can cause 

data loss or distortion.  

Despite redundancy, when the window overlap is 

close to the maximum possible, it will give a more 

accurate representation of the data than TCGRs done 

with progressively less window overlap. Problems 

posed by shrinking window overlap include the 

Figure 2. Effect of subsequence sizes 1, 2, Figure 2. Effect of subsequence sizes 1, 2, Figure 2. Effect of subsequence sizes 1, 2, Figure 2. Effect of subsequence sizes 1, 2, 
and 3 from left to right respectively on and 3 from left to right respectively on and 3 from left to right respectively on and 3 from left to right respectively on 
synthetic data with a constant window size synthetic data with a constant window size synthetic data with a constant window size synthetic data with a constant window size 
of 10, and a constant overlap of 9. The of 10, and a constant overlap of 9. The of 10, and a constant overlap of 9. The of 10, and a constant overlap of 9. The 
input data set is shown below the image.input data set is shown below the image.input data set is shown below the image.input data set is shown below the image.    

Figure Figure Figure Figure 3333. The data set from figure 2 with . The data set from figure 2 with . The data set from figure 2 with . The data set from figure 2 with 
subsequence size 2 showing the effect of subsequence size 2 showing the effect of subsequence size 2 showing the effect of subsequence size 2 showing the effect of 
increased window length (WL) with maximized increased window length (WL) with maximized increased window length (WL) with maximized increased window length (WL) with maximized 
window overlap (WO).window overlap (WO).window overlap (WO).window overlap (WO).    



merging of nearby hotspots in the same column, as 

well as the loss of very small hotspots occurring only 

in a small number of consecutive windows. Too little 

window overlap will result in over-generalized data 

that does not accurately represent the sequences, and 

therefore, window overlap should be maximized.  

 

3.6. Sequence Alignment 
 

Alignment is also an important factor in TCGR 

visualization of DNA sequence sets. Different 

degrees of alignment in the sequences will produce 

different results with TCGR, affecting the location 

and strength of hotspots. Hotspots may appear in 

aligned data that are not seen in unaligned data due to 

small differences in sequence length. Combined 

effect of parameters also impacts the representation 

of data sets with TCGR, so the parameters need to be 

considered relative to each other (such as the window 

length to subsequence size ratio) as well as 

individually. If data purely aligned to the starting 

points of the sequences, common regions become 

progressively less likely to show up in TCGR. Poorly 

aligned conserved regions downstream will not show 

up as prominently as those upstream unless alignment 

is used (Figure 4). Therefore, alignment is important 

to maximize the appearance of conserved regions. 

 

4. Prediction 

 
TCGRs provide a great visualization tool for 

DNA/RNA sequences.  However, they serve other 

functions as well.  Being based on the existence of 

count vectors, these mathematical versions of the 

images provide the basis for prediction techniques. 

The Extensible Markov Model (EMM) is a very 

powerful modeling tool.  The time series view of 

TCGR easily lends itself to be modeled by an EMM.  

An EMM is a time varying Markov Chain (MC).  At 

any point in time, when viewed as a static graph it is 

a MC.  However, over time the structure of the graph 

changes.  Both the number of nodes in the graph as 

well as the transition probabilities vary.  Thus the 

EMM is both a graph and a learning algorithm.  The 

EMM takes the advantage of distance-based 

clustering for spatial data as well as that of the 

Markov chain for temporality. EMM achieves an 

efficient modeling by mapping groups of closely 

located real world events to states of a Markov chain.  

Further information concerning EMM can be found 

in [6]. 

The TCGR count input can be viewed as both 

spatial and temporal.  Spatiality is defined by the sub-

patterns being examined.  Temporality is based on 

the sliding window.  With the EMM model, at any 

time t a probability of a target event E occurring at 

some time in the future can be calculated.  At any 

time, t, we can view the input as represented by a 

vector of n numeric values: Et = <S1t, S2t, …, Snt>.  

For the miRNA prediction problem, t is actually the 

sliding window number.  Each element, Sit, contains 

the count vector for sub-pattern i at time t.  The 

miRNA prediction problem can be viewed as 

predicting whether the EMM (which was constructed 

using known miRNAs as training data) accurately 

models a given input sequence.  Given an input 

sequence, the likelihood that it is modeled by an 

EMM can be determined by multiplying the 

transition probabilities found along the path 

constructed in the EMM as the input sequence is 

mapped (clustered) to EMM nodes.   

Over the past several years, scientists have 

identified numerous miRNAs that exist in many 

different species. In most cases, biologists find 

miRNAs by molecular biology techniques that 

biochemically enrich for and then sequence small 

RNAs extracted from tissues or organisms of interest 

[7].  Recent studies have also exploited 

bioinformatics algorithms to predict miRNAs based 

on the presence of hairpins, other structures 

associated with the presence of miRNAs and 

conserved sequences across species. Most of these in-

silico miRNA prediction algorithms rely heavily on 

cross-species sequence conservation.  However, it is 

hypothesized that species-specific miRNAs 

contribute and explain the biological diversity. 

Recent experiments have discovered and confirmed a 

Figure Figure Figure Figure 4444. Effect of alignment on the same . Effect of alignment on the same . Effect of alignment on the same . Effect of alignment on the same 
data set from figure 2 for subsequence size data set from figure 2 for subsequence size data set from figure 2 for subsequence size data set from figure 2 for subsequence size 
2, window length 10, and window overlap 2, window length 10, and window overlap 2, window length 10, and window overlap 2, window length 10, and window overlap 
9. The alignment was produced with G9. The alignment was produced with G9. The alignment was produced with G9. The alignment was produced with G----
Align using a gap peAlign using a gap peAlign using a gap peAlign using a gap penalty of 135 and the nalty of 135 and the nalty of 135 and the nalty of 135 and the 
default scoring matrix.default scoring matrix.default scoring matrix.default scoring matrix.    



number of miRNAs that do not have close homologs 

in the sequenced genomes available. Recently, 

Bentwich et al. [8] proposed a miRNA prediction 

method to find both conserved and nonconserved 

human miRNAs. They used structural features 

including hairpin length, loop length, stability score, 

free energy per nucleotide, number of matching base 

pairs and bulge size, and sequence features including 

sequence repetitiveness, regular and inverted internal 

repeats and free energy per nucleotide composition.   

However, their method still uses cross-species 

sequence conservation  to make predictions.  Nam et 

al. [9] proposed a paired hidden Markov model 

(HMM) as a general miRNA prediction method to 

identify close homologs as well as distant homologs.  

Conceptually, our approach has the following 

advantages: 

1. It lends itself to capturing potential long-

range interactions between nucleotides. One well-

known drawback of the Markov Models for 

sequence classification problem is their inability 

of capturing long-range interactions. Although 

higher order MMs can be developed, they are 

difficult to train and computationally expensive. 

However, because the EMMs in our case take as 

input not the sequence directly, but the TCGR 

count vectors, which are computed from the 

sequences, we can use a first order MM and 

simply let the TCGR algorithm capture potential 

interactions within the sliding window. 

2. The EMMs can reduce the number of states 

by merging “similar” states. This is particularly 

appealing for miRNA classification. Currently, 

there are only a small number of experimentally 

validated miRNAs, thus the size of the training set 

is very small. A MM with fewer states means that 

it will require less training data.    

 

5. Conclusion 
 

 TCGRs represent a new class of DNA/RNA 

visualization tools.  Careful use of parameters and 

alignment in TCGR can generate a more accurate 

data representation. The parameters need to be 

chosen carefully to have the best data representation, 

and alignment is important for doing TCGR with 

multiple sequences. The ability of alignment to 

facilitate the location of hotspots indicating 

conserved regions is especially important.  

TCGRs provide the basis for a novel miRNA 

prediction technique that is completely independent 

of  cross-species similarities.  As such its 

applicability is general and quite novel.  Ongoing 

studies have demonstrated the potential benefit of this 

approach [5]. 

 

6. Related Links 
 

The java-based TCGR visualization program, count 

generator, and alignment tool G-Align can be found 

at http://engr.smu.edu/~dquick 
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