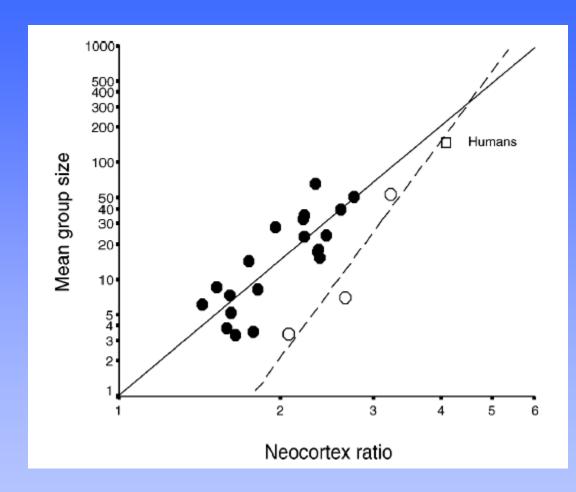
# Thoughts on Human Emotions, Communication Breakthroughs, and the Next Generation of Data Mining

Hillol Kargupta

University of Maryland Baltimore County & Agnik

#### Roadmap


Human emotions and communication

- Communication breakthroughs of the past
- What is missing?
- How data mining can help

#### Human Emotions and the Need for Interactions







 R.I.M. Dunbar, THE SOCIAL BRAIN: Mind, Language, and Society in Evolutionary Perspective, Annual Review of Anthropology, October 2003, Vol. 32, Pages 163-181

### The First Breakthrough: Speech

- Early form of language,200,000 years ago
- Local Communication
- Can communicate with only those who are nearby and can hear what you are saying.



Oracle of Apollo, Delphi

### **Extending the Range Over Time**

- **30,000 BC**
- Observe an event
- Document for posterior generations
- One to Some



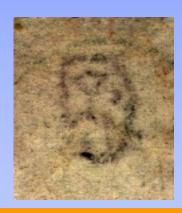
African talking drum.



African talking drum.

## **Expanding the Reach**




A Scandinavian fire beacon.



19<sup>th</sup> century postal system in Eastern Europe.



African talking drum.



18<sup>th</sup> century stamp in India.

#### **Evolution of Communication Structure**

One to Some

One to One

## Technology in 19th-21st Century



**Siemens Telex** 



Radio from 1959

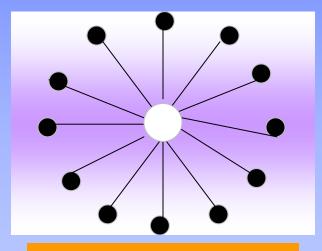


Telephone from 1896.



Cell-phone in 2007

#### Further Evolution of Communication Structure


- One to One
- Many to One
- Mostly Address-based

### That is Changing

- Spams
- Social networking sites
- Search engines
- Citizen Journalism

#### **Problems of Current Client-Server Models**

- Economics of Mass Communication
- Privacy and Intellectual Property Issues
- Not Scalable



Reliance on a central server.

#### **Current Approach**

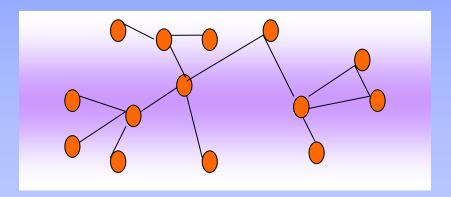
Taking your TV remote away and letting someone else to find the right content for you...Hmmm...



Channel 1
Channel 2

,

,


,

Channel 150

**Note the Remote** 

### A Local Approach

- Local control in distributed systems
- Efficient global communication through local interactions
- Bounding the cost at every node



### **Examples in Natural Systems**

- Human societies
- Swarm behavior in fish schools
- Insect colonies



Fish school



**Termite colonies** 

#### Peer-to-peer (P2P) Networks

- Relies primarily on the computing resources of the participants in the network rather than a relatively low number of servers.
- P2P networks are typically used for connecting nodes via largely ad hoc connections.
- No central administrator/coordinator
- Peers simultaneously function as both "clients" and "servers"
- Privacy is an important issue in most P2P applications

#### Where do we find P2P Networks?

#### Applications:

- File-sharing networks: KaZAa, Napster, Gnutella
- P2P network storage, web caching,
- P2P bio-informatics,
- P2P astronomy,
- P2P Information retrieval
- P2P Sensor Networks?
- P2P Mobile Ad-hoc NETwork (MANET)?
- Next Generation:
  - P2P Search Engines, Social Networking, Digital libraries, P2P "YouTube"?

### P2P Web Mining







Web mining in a sever-less environment

#### **Useful Browser Data**

- Web-browser history
- Browser cache
- Click-stream data stored at browser (browsing pattern)
- Search queries typed in the search engine
- User profile
- Bookmarks
- Challenges
  - Indexing, clustering, data analysis in a decentralized asynchronous manner
  - Scalability
  - Privacy

#### References on P2P Web Mining

 K. Das, K. Bhaduri, K. Liu, H. Kargupta. (2006). Identifying Significant Inner Product Elements in a Peer-to-Peer Network. IEEE Transactions on Knowledge and Data Engineering. (Accepted, in press)

K. Liu, K Bhaduri, K. Das, P. Nguyen, H. Kargupta (2006). Client-side Web Mining for Community Formation in Peer-to-Peer Environments. ACM SIGKDD Explorations. Volume 8, Issue 2, Pages 11 - 20.

### P2P NASA Astronomy Data Mining

- Virtual Observatories
  - Client-server architecture
  - Consider Sloan Digital Sky Survey:
    - 2M hits per month
    - traffic is doubling every 15 months
  - Need better scalability
- MyDB: Download and locally manage your data
- Network of such databases
- Searching, clustering, and outlier detection in P2P virtual observatory data network.
- NASA AIST Project at UMBC

#### Some References

- D. Peleg. (2000) Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia.
- M. Naor and L. Stockmeyer. (1995). What can be computed locally? SIAM Journal on Computing, Volume 24, Issue 6, Pages: 1259 1277
- H. Kargupta and K. Sivakumar, (2004) Existential Pleasures of Distributed Data
   Mining. Data Mining: Next Generation Challenges and Future Directions. Editors: H.
   Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha. AAAI/MIT Press.
- S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta. (2006). Distributed Data Mining in Peer-to-Peer Networks. IEEE Internet Computing special issue on Distributed Data Mining, Volume 10, Number 4, Pages 18 - 26.
- Assaf Schuster and Ran Wolff. (2003) Association Rule Mining in Peer-to-Peer Systems Special Issue on Distributed and Mobile Data Mining, IEEE Transactions on System, Man, Cybernetics, Part B.

#### Recommendations and a Question

Think computing from a truly interdisciplinary perspective

 Technology does not matter unless it can "sync" with human needs

Does the current client-server model for connecting with others "sync" with our basic needs?