

Large Graph Mining

Christos Faloutsos CMU

Thank you!

• Hillol Kargupta

Outline

- Problem definition / Motivation
- Static & dynamic laws; generators
- Tools: CenterPiece graphs; fraud detection
- Conclusions

Motivation

Data mining: ~ find patterns (rules, outliers)

- Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Fraud detection

Problem#1: Joint work with

Dr. Deepayan Chakrabarti (CMU/Yahoo R.L.)

Graphs - why should we care?

Food Web [Martinez '91]

Protein Interactions [genomebiology.com]

Friendship Network [Moody '01]

NGDM 2007

C. Faloutsos

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

C. Faloutsos

Graphs - why should we care?

- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Problem #1 - network and graph mining

- How does the Internet look like?
- How does the web look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Graph mining

• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns

Solution#1

• Power law in the degree distribution [SIGCOMM99]

internet domains

NGDM 2007

C. Faloutsos

Solution#1': Eigen Exponent E

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

NGDM 2007

C. Faloutsos

But:

How about graphs from other domains?

More power laws:

• web hit counts [w/ A. Montgomery]

0

epinions.com

C. Faloutsos

Motivation

Data mining: ~ find patterns (rules, outliers)

- Problem#1: How do real graphs look like?
- Problem#2: How do they evolve?
- Problem#3: How to generate realistic graphs
 TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Fraud detection

Problem#2: Time evolution

• with Jure Leskovec (CMU/MLD)

and Jon Kleinberg (Cornell – sabb. @ CMU)

Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?

Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:

 - diameter ~ (hr N)
 diameter ~ O(hr S log N)
- What is happening in real data?
- Diameter shrinks over time

Diameter – ArXiv citation graph

- Citations among physics papers
- 1992 2003
- One graph per year

Diameter – "Autonomous Systems"

- Graph of Internet
- One graph per day
- 1997 2000

C. Faloutsos

Diameter – "Affiliation Network"

- Graph of collaborations in physics – authors linked to papers
- 10 years of data

Diameter – "Patents"

- Patent citation network
- 25 years of data

Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for E(t+1) =? 2 * E(t)

Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

- Q: what is your guess for E(t+1) = E(t)
- A: over-doubled!

– But obeying the ``Densification Power Law''

NGDM 2007

C. Faloutsos

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations

C. Faloutsos

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations

C. Faloutsos

- Citations among physics papers
- 2003:
 - 29,555 papers,
 352,807
 citations

C. Faloutsos

- Citations among physics papers
- 2003:
 29,555 papers, 352,807

citations

C. Faloutsos

Densification – Patent Citations

- Citations among patents granted
- 1999
 - 2.9 million nodes
 - 16.5 million
 edges
- Each year is a datapoint

NGDM 2007

C. Faloutsos

Densification – Autonomous Systems

- Graph of Internet
- 2000
 - 6,000 nodes
 - 26,000 edges
- One graph per day

C. Faloutsos

Densification – Affiliation Network

- Authors linked to their publications
- 2002
 - 60,000 nodes
 - 20,000 authors
 - 38,000 papers
 - 133,000 edges

NGDM 2007

C. Faloutsos

Motivation

Data mining: ~ find patterns (rules, outliers)
Problem#1: How do real graphs look like?
Problem#2: How do they evolve?

- Problem#3: How to generate realistic graphs TOOLS
- Problem#4: Who is the 'master-mind'?
- Problem#5: Fraud detection

Problem#3: Generation

- Given a growing graph with count of nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns

Problem Definition

- Given a growing graph with count of nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - Power Law Degree Distribution
 - Power Law eigenvalue and eigenvector distribution
 - Small Diameter
 - Dynamic Patterns
 - Growth Power Law
 - Shrinking/Stabilizing Diameters

Problem Definition

- Given a growing graph with count of nodes N_1, N_2, \dots
- Generate a realistic sequence of graphs that will obey all the patterns
- Idea: Self-similarity
 - Leads to power laws
 - Communities within communities

G1

Adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

G₄ adjacency matrix C. Faloutsos

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Properties:

- We can PROVE that
 - Degree distribution is multinomial ~ power law
 - Diameter: constant
 - Eigenvalue distribution: multinomial
 - First eigenvector: multinomial
- See [Leskovec+, PKDD'05] for proofs

Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First and only generator for which we can **prove** all these properties

(Q: how to fit the parm's?)

A:

- Stochastic version of Kronecker graphs +
- Max likelihood +
- Metropolis sampling
- [Leskovec+, ICML'07]

Experiments on real AS graph

Conclusions

- Kronecker graphs have:
 - All the static properties
 - ✓ Heavy tailed degree distributions
 - ✓ Small diameter
 - ✓ Multinomial eigenvalues and eigenvectors
 - All the temporal properties
 - ✓ Densification Power Law
 - Shrinking/Stabilizing Diameters
 - We can formally prove these results

Motivation

Data mining: ~ find patterns (rules, outliers)
Problem#1: How do real graphs look like?
Problem#2: How do they evolve?
Problem#3: How to generate realistic graphs
TOOLS

- Problem#4: Who is the 'master-mind'?
 - Problem#5: Fraud detection

Problem#4: MasterMind – 'CePS'

- w/ Hanghang Tong, KDD 2006
- htong <at> cs.cmu.edu

Center-Piece Subgraph(Ceps)

- Given Q query nodes
- Find Center-piece $(\leq b)$
- App.
 - Social Networks
 - Law Inforcement, ...
- Idea:
 - Proximity -> random walk with restarts

NGDM 2007

C. Faloutsos

Case Study: AND query

NGDM 2007

C. Faloutsos

Case Study: AND query

Case Study: AND query

52

Conclusions

- Q1:How to measure the importance?
- A1: RWR+K_SoftAnd
- Q2:How to do it efficiently?
- A2:Graph Partition (Fast CePS)
 - $-\sim 90\%$ quality
 - 150x speedup (ICDM'06)

Motivation

Data mining: ~ find patterns (rules, outliers)
✓ Problem#1: How do real graphs look like?
✓ Problem#2: How do they evolve?
✓ Problem#3: How to generate realistic graphs
TOOLS
✓ Problem#4: Who is the 'master-mind'?

• Problem#5: Fraud detection

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?
- or him/her?

E-bay Fraud detection - NetProbe

NGDM 2007

C. Faloutsos

OVERALL CONCLUSIONS

- Graphs pose a wealth of fascinating problems
- self-similarity and power laws work, when textbook methods fail!
- New patterns (shrinking diameter!)
- New generator: Kronecker

Promising directions

- Reaching out
 - Sociology, epidemiology; physics, ++...
 - Computer networks, security, intrusion det.
 - Num. analysis (tensors)

60

Promising directions – cont'd

- Scaling up, to Gb/Tb/Pb
 - Storage Systems
 - Parallelism (hadoop/map-reduce)

E.g.: self-* system @ CMU

- >200 nodes
- 40 racks of computing equipment
- 774kw of power.
- target: 1 PetaByte
- goal: self-correcting, selfsecuring, self-monitoring, self-

DM for Tera- and Peta-bytes

- Two-way street:
- <- DM can use such infrastructures to find patterns
- -> DM can help such infrastructures become self-healing, self-adjusting, 'self-*'

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan <u>Fast Random Walk with Restart and Its</u> <u>Applications</u> ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos <u>Center-Piece</u> <u>Subgraphs: Problem Definition and Fast</u> <u>Solutions, KDD 2006, Philadelphia, PA</u>

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos <u>Graphs over Time: Densification Laws,</u> <u>Shrinking Diameters and Possible Explanations</u> KDD 2005, Chicago, IL. ("Best Research Paper" award).
- Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos <u>Realistic</u>, <u>Mathematically Tractable Graph Generation and</u> <u>Evolution, Using Kronecker Multiplication</u> (ECML/PKDD 2005), Porto, Portugal, 2005.

- Jure Leskovec and Christos Faloutsos, *Scalable Modeling of Real Graphs using Kronecker Multiplication*, ICML 2007, Corvallis, OR, USA
- Shashank Pandit, Duen Horng (Polo) Chau, Samuel Wang and Christos Faloutsos <u>NetProbe: A</u> <u>Fast and Scalable System for Fraud Detection in</u> <u>Online Auction Networks</u> WWW 2007, Banff, Alberta, Canada, May 8-12, 2007.
- Jimeng Sun, Dacheng Tao, Christos Faloutsos
 <u>Beyond Streams and Graphs: Dynamic Tensor</u> <u>Analysis, KDD 2006, Philadelphia, PA</u>

 Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. *Less is More: Compact Matrix Decomposition for Large Sparse Graphs*, SDM, Minneapolis, Minnesota, Apr 2007. [pdf]

THANK YOU!

Contact info:

www. cs.cmu.edu /~christos (w/ papers, datasets, code, etc)

C. Faloutsos