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Science Goal: Understand global scale patterns in 
biosphere processes

Earth Science Questions:

– When and where do ecosystem disturbances 
occur?

– What is the scale and location of human-
induced land cover change and its impact?

– How are ocean, atmosphere and land 
processes coupled?

Data sources:

– Weather observation stations

– High-resolution EOS satellites

1982-2000 AVHRR at 2.5° x 2.5° resolution, 
2000-present MODIS at 250m x 250m resolution

– Model-based data from forecast and other 
models

– Data sets created by data fusion

Discovery of Climate Patterns from Global Data Sets

Earth 

Observing 

System

Monthly Average Temperature



© Vipin Kumar NSF – October 10, 2007  2

Computer Science Challenges

� Spatio-temporal nature of data

– Traditional data mining techniques do not take 

advantage of spatial and temporal autocorrelation.

� Scalability

– Size of Earth Science data sets has increased 6 

orders of magnitude in 20 years, and continues to 

grow with higher resolution data.

– Grid cells have gone from a resolution of 2.5° x 2.5°

(10K points for the globe) to 250m x 250m (15M 

points for just California; about 10 billion for the globe)

� High-dimensionality

– Long time series are common in Earth Science
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Detection of Ecosystem Disturbances

Goal: Detection of sudden changes in greenness over extensive land areas due 
to ecosystem disturbances.

� Physical: hurricanes, fires, floods, droughts, ice storms

� Biogenic: insects, mammals, pathogens

� Anthropogenic: logging, drainage of wetlands, chemical pollution

Haze from forest fires over the Indonesian island of 

Borneo (October 5, 2006).  Over 8 million hectares of 

forest and farmland burned during August 2006.

Image Source: NASA

Motivation: To obtain deeper insight into 

interplay among natural disasters, 

human activity and the rise of CO2.

� Satellite observations can reveal completely new 

pictures of ecological changes and disasters.

� Ecosystem disturbances can contribute to the 

current rise of CO2 in the atmosphere, with global 

climate implications.

� In some remote locations, disturbances may have 

gone undetected.
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Detection of Ecosystem Disturbances

Hypothesis: significant and sustained decline in vegetation FPAR observed 

from satellites represents a disturbance event

� Can be verified from independent records of such disturbances.

FPAR: Fraction absorbed of Photosynthetically Active Radiation by vegetation canopies

FPAR   January 1998

0 20 40 60 80 100

FPAR   July 1998

FPAR-LO event

Year

Hypothetical Disturbance Event

Potter, et al., "Major Disturbance Events in Terrestrial Ecosystems Detected using 

Global Satellite Data Sets", Global Change Biology, 9(7), 1005-1021, 2003.
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Verification of Disturbances: Fires

Manitoba, Canada, 1989

List of well-documented wildfires that burned areas covering 

several Mha in a single year or vegetation growing season.

For each confirmed wildfire event listed in the table, our 

disturbance detection method confirms a FPAR-LO event at (or 

near) the SD >= 1.7 level lasting >12 consecutive months 

associated with the reported time period of actual fire activity.

Yellowstone Fires 1988
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Hurricane Hugo 1989

Yea r Hu rricane Category Landf all Lo cation Landf all Lat/Lon

1983 Alicia 3 SE Texas , USA 28 .9 N 95.0  W

1985 Gloria 3 Eas t Coa st, U SA 35 .5 N 75.5  W

1985 Elena 3 Mississipp i, USA 30 .2 N 88.8W

1988 Gilbe rt 3 Eas t Coa st, M ex ico 20 .4 N 86.5  N,  23.9  N 97 .0 W

1989 Hugo 4 No rth Caro lina , USA 33 .5 N 80.3  W

Hurricanes of the 1980s Detected as FPAR-LO Events

Verification of Disturbances: Hurricanes
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Southern Drought 1986

Year Drought Most Heavily Impacted Regional Locations

1986 Southern USA Georgia, Carolinas, California

1988 Central USA Midwest and Northeast states

1989 Northern Plains Colorado

1993 SE USA Alabama, Georgia, Carolinas, Tennessee, Virginia

1998 Southern USA Texas, Oklahoma, Carolinas, Georgia, Florida

Major Droughts Detected as FPAR-LO Events

Verification of Disturbances: Droughts
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Detection of Ecosystem Disturbances

Outcomes: Estimated that 9 billion metric tons of carbon may have 
moved from the Earth’s soil and surface life forms into the 
atmosphere in 18 years beginning in 1982 due to wildfires and other 
disturbances.

� Fossil fuel emission of CO2 to the atmosphere each year was about 
7 billion metric tons in 1990.

Release: 03-51AR

NASA DATA MINING REVEALS A NEW HISTORY OF NATURAL DISASTERS 

NASA is using satellite data to paint a detailed global picture of the interplay among natural disasters, 

human activities and the rise of carbon dioxide in the Earth's atmosphere during the past 20 years.

http://www.nasa.gov/centers/ames/news/releases/2003/03_51AR.html

Uniqueness of study:

� global in scope

� covered more than a 

decade of analysis

� encompass all potential 

categories of major 

ecosystem disturbance –

physical, biogenic, and 

anthropogenic
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Land Cover Change Detection

Goal: Determine where, when and why natural ecosystem conversions occur

– E.g. Deforestation, Urbanization, Agricultural intensification

Motivation:

� Characteristics of the land cover impacts Local climate, Radiation balance, 
Biogeochemistry, Hydrology, Diversity/abundance of terrestrial species

� Conversion of natural land cover can have undesirable environmental 
consequences

Deforestation changes local 

weather. Cloudiness and rainfall 

can be greater over cleared land 

(image right) than over intact forest 

(left).

Urbanization tends to 

reduce vegetation density.

Source: NASA Earth Observatory
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Data: Enhanced Vegetation Index 

Global EVI in Summer, 2000.

Global EVI in Winter, 2001. Image Source: NASA/Goddard Space Flight Center Scientific Visualization Studio

� Enhanced Vegetation Index (EVI) 

represents the "greenness" signal 

(area-averaged canopy photosynthetic 

capacity), with improved sensitivity in 

high biomass cover areas.

� MODIS algorithms have been used to 

generate the Enhanced Vegetation 

Index (EVI) at 250-meter spatial 

resolution from Feb 2000 to the present

NASA's Terra satellite platform launched in 1999 has the 

Moderate Resolution Imaging Spectroradiometer (MODIS)
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Examples of Change Points

� Changes of this nature can be detected only with high-resolution data.

� The two time series show an 

abrupt jump in EVI in 2003; a land 

cover change pattern we are 

looking for.  

� The location of the points 

correspond to a new golf course, 

which was in fact opened in 2003. 
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Traditional Change Detection Techniques

� Fisher algorithm

� CUSUM (Cumulative Sum Control Charts)

� HMM-based approaches

� Kalman Filter

Limitations:

– Most techniques do not scale to massive datasets

– Do not make use of seasonality of Earth Science data 

and/or intra-season variability

– Spatial and temporal autocorrelation are not exploited
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Focus of the Study: Northern California

California has experienced rapid population growth and 
changing economic activities

� population increased by 75% 

between 1970 and 2005

� over half of all new irrigated farmland 

put into production was of lesser 

quality than prime farmland taken out 

of production by urbanization

� San Francisco Bay area selected for 

analysis

EVI in Northern California for February 2002
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High-level view of land cover

Cluster 1 - High seasonal biomass density, moderate interannual variability  (shrub cover)

Cluster 2 - Moderate annual biomass density, moderate interannual variability (grass cover)

Cluster 3 - High annual biomass density, low interannual variability (evergreen tree cover)

Cluster 4 - Low annual biomass density, low interannual variability (urbanized cover)

Cluster 5 - High seasonal biomass density, high interannual variability  (agricultural cover)
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Cluster 3

Image source: Google Maps

Cluster 3 - High annual biomass density, low interannual variability (evergreen tree cover)
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Cluster 4

Image source: Google Maps

Cluster 4 - Low annual biomass density, low interannual variability (urbanized cover)
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Distance to Centroid Scheme

Typical Outlier: Time Series (above) and farm 

in Central California corresponding to the 

outlier (below)

Image source: Google Maps

Limitations:

� Sensitive to intra-annual variability in EVI

� Depends on cluster structure

� Treats outliers and change points as the same
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Yearly averages scheme

� In this scheme, we look at the 

differences between yearly 

averages

� If there is a “jump” in the 

yearly differences, we 

consider the time series to 

have a change point

This time series was given the 

top score with the above 

scheme, while more 

interesting changes were not 

given high scores.

Limitations:

� Interesting points are missed 

because changes that occur 

within a year are averaged 

out, leading to a gradual 

increase in differences

� Can only detect changes in 

the mean
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A new change detection technique

� The idea behind this technique was to exploit the major 

mode of behavior (seasonality) in order to detect 

changes.

� The time series for each location is processed as 

follows:

1. The two most similar seasons are merged, and the 

distance/similarity is stored.

2. Step 1 is applied recursively until one season is left.

3. The change score for this location is based on 

whether any of the observed distances are extreme 

(e.g. ratio of maximum distance/minimum distance).
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Results: Histogram of Scores

� There are about 180K points in total.

� 900 have score > 4

� 31 points have score > 8.  Of these 22 points were found to correspond to 

interesting land-use changes.  Others corresponded to farm land.

Histogram of all scores
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Results: Top 3 scores

The top 3 points correspond to a golf course in Oakland.  This golf course was built in 2003, 

which corresponds to the time step at which the time series exhibit a change.
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Results: More points

These 3 time series correspond to a subdivision under construction. 
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Results: More points

Golf Course (built in 2001, corresponding to change in time series)



© Vipin Kumar NSF – October 10, 2007  24

Results: More points

Subdivision built in 2002
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Results: More points

Construction of Pacific Commons shopping area in Fremont, CA
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Change Point Challenges

� Spatio-temporal autocorrelation

– Traditional techniques for change point detection were 
not developed for spatio-temporal data

� Scalability

– The data is at 250m resolution (and may become 
even finer in the future).

– It is important for any algorithm to be scalable, if it is 
used with this data

� Characterizing changes

– Techniques are more useful when changes are 
characterized in relation to other points

– This greatly enhances the ability of the domain 
scientist to explain why the change occurred
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Climate Indices: Connecting the 
Ocean/Atmosphere and the Land
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� A climate index is a time 
series of sea surface 
temperature or sea level 
pressure

� Climate indices capture 
teleconnections

� The simultaneous variation in 
climate and related processes 
over widely separated points on 
the Earth
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Discovery of Climate Indices Using Clustering

Result: A cluster-based approach for discovering climate indices provides better physical 
interpretation than those based on the SVD/EOF paradigm, and provide candidate indices 
with better predictive power than known indices for some land areas. 
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� Clustering provides an alternative 
approach for finding candidate 
indices.

– Clusters represent ocean regions with 
relatively homogeneous behavior. 

– The centroids of these clusters are time 
series that summarize the behavior of 
these ocean areas, and thus, represent 
potential climate indices.

� Clusters are found using the Shared 
Nearest Neighbor (SNN) method that 
eliminates “noise” points and tends to find 
regions of “uniform density”.

� Clusters are filtered to eliminate 
those with low impact on land points

DMI

SOI

SOI

NAO AO
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SST Clusters that Reproduce Known Indices

Clusters of SST that have high impact on 

land temperature

# grid points: 67K Land, 40K Ocean      Current data size range: 20 – 400 MB

Monthly data over a range of 17 to 50 years

Cluster Nino Index Correlation

94 NINO 1+2 0.9225

67 NINO 3 0.9462

78 NINO 3.4 0.9196

75 NINO 4 0.9165

Some SST clusters reproduce well-

known climate indices for El Niño.
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SST Cluster Moderately Correlated to Known Indices

Some SST clusters are significantly different than known indices, but provide better 

correlation with land climate variables than known indices for many parts of the globe.  

Cluster 29 versus El Nino Indices 
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The figure shows the difference 
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Areas in yellow indicate where 

cluster 29 has higher 

correlation.
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Finding New Patterns: Indian Monsoon Dipole Mode Index 

� Recently a new index, the 

Indian Ocean Dipole Mode 

index (DMI), has been 

discovered*. 

� DMI is defined as the difference 

in SST anomaly between the 

region 5S-5N, 55E-75E and the 

region 0-10S, 85E-95E.

� DMI and is an indicator of a 

weak monsoon over the Indian 

subcontinent and heavy rainfall 

over East Africa.

� We can reproduce this index as 

a difference of pressure indices 

of clusters 16 and 22.

* N. H. Saji, B. N. Goswami, P. N. Vinayachandran and T. Yamagata,  “A dipole mode in the tropical Indian Ocean,” Nature 401, 360-363 (23 September 1999).

DMI

Plot of cluster 16 – cluster 22 versus the Indian Ocean Dipole Mode index. 

(Indices smoothed using 12 month moving average.)
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Clustering Challenges

Moving Clusters in Space and Time

� Most well-known indices based on data collected at fixed land stations.

� NAO computed as the normalized difference between SLP at a pair of land 
stations in the Arctic and the subtropical Atlantic regions of the North Atlantic 
Ocean
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Moving Clusters in Space and Time

� However, underlying 

phenomenon may not 

occur at exact location of 

the land station.  e.g. NAO

� Challenge: Given sensor 

readings for SLP at 

different points in the 

ocean, how to identify 

clusters of low/high 

pressure points that may 

move with space and time.

Source:  Portis et al, Seasonality of the NAO, AGU Chapman 

Conference, 2000.
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