
www.informatics.uiuc.edu

Opportunities for XXL Datamining

Marc Snir

www.informatics.uiuc.edu

2

Outline

� How a Supercomputer looks like in > 2010

� What it takes to run a DM code on such a
platform

� How DM can help supercomputing

www.informatics.uiuc.edu

3

Large NSF Funded Supercomputers
beyond 2010

� One Petascale platform -- Blue Waters at NCSA, U Illinois

– Sustained performance: petaflop range

– Memory: petabyte range

– Disk: 10’s petabytes

– Archival storage: exabyte range

� Multiple 1/4 scale platforms at various universities

� Available to NSF-funded “grand challenge” teams on a
competitive basis

� My talk: What it takes to mine data at such scale

� Your job: Think big

www.informatics.uiuc.edu

4

The Uniprocessor Crisis

� Manufacturers cannot increase clock rate anymore (power
problem)

� Computer architects have run out of productive ideas on
how to use more transistors to increase single thread
performance

– Diminishing return on caches

– Diminishing return on instruction-level parallelism

� Increased processor performance will come only from the
increase on number of cores per chip

Petascale = 250K -- 1M threads

Need algorithms with massive levels of parallelism

www.informatics.uiuc.edu

5

Average # Processors Top 500 System

0

500

1000

1500

2000

2500

3000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

www.informatics.uiuc.edu

6

Mileage is Less than Advertised

0

0.5

1

1.5

2

2.5

3

3.5

4

LCM Eclat FP-Growth

nominal

IPC

Instruction per cycle, frequent item mining

(M Wei)

www.informatics.uiuc.edu

7

It’s the Memory, Stupid

0

0.05

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000 25000 30000

Seem stuck at ~ 1:10 ratio

(source McAlpin)

PC Balance

(word operands from memory per flop)

www.informatics.uiuc.edu

8

The Memory Wall and Palliatives

� The problem

– Memory bandwidth is limited (cost)

– Compilers cannot issue enough concurrent loads to fill
the memory pipe

– Compilers cannot issue loads early enough to avoid
stalls

� Solutions

– Multicore and vector operations -- to fill the pipe
Simultaneous multithreading -- to tolerate latency

– Need even higher levels of parallelism!

www.informatics.uiuc.edu

9

Solutions to the Memory Wall

� Caching and locality

– Need algorithms with good locality

� Split communication

– Memory prefetch (local memory)

– Put/get (remote memory)

– Need programmed communication (not necessarily
message-passing)

� N.B.: Computer power is essentially free; you pay for
storing and moving data

– Accelerators (GPUs, FPGAs, Cell processors) enhance a
non-critical resource, and will often have a negligible
impact on overall performance

www.informatics.uiuc.edu

10

Load Balancing

� Problem: Amount of computation in DM kernels heavily
data dependent -- work partitioning results in load
imbalances

� Hard solution: develop good work predictors and do
explicit, static load balancing

� Easy solution: use system with task virtualization and
dynamic task migration

– E.g., AMPI (Kale, http://charm.cs.uiuc.edu/) -- scalable,
negligible (often negative) overheads

– Overhead of task migration is few seconds, at worse

� Parallel file system is shared all

– Task virtualization essential for modularity and
ease of programming

www.informatics.uiuc.edu

11

Code Tuning

� Is essential when using a Petascale system

– 1 hour = $5K - $10K

� Is data dependent (more so with Datamining than with
many applications)

� Is platform dependent

www.informatics.uiuc.edu

12

Relative Performance of Frequent Item Mining
Codes is Input Dependent

0

1

2

3

4

5

chess

(s=0.18)

pumsb

(s=0.45)

bms-wv-1

(s=0.0005)

accidents

(s=0.16)

webdocs

(s=0.1)

n
o
rm

a
liz

e
d
 e
x
e
c
u
ti
o
n
 t
im

e

LCM FP-Growth Eclat

three algorithms on six real-world datasets

(C Jiang PhD thesis)

FIMI workshop needs some thinking…

www.informatics.uiuc.edu

13

A Schematic View of Performance
Tuning

All three should be platform
and data dependent1. Algorithm

selection

(LCM,

FP_Growth,

Eclat,…)

2. Implementation

selection
(choice of data

structures…)

3. Automatic

tuning
(compiler,

runtime)

www.informatics.uiuc.edu

14

Algorithm Selection is a Classification
Problem

Generated

datasets

Input set

generator

Empirical

evaluation

Alg.

pool

Labeled

features

SVM

learning

Platform specific

SVM model Alg.
Run

Alg.

Input

Feature

Training stage Execution stage

predict

•Can be solved using

supervised ML

•Smart part: choice of

feature vector that can

be computed fast and

“works”

www.informatics.uiuc.edu

15

Results: Average execution time

9.34
10.51

20.63

17.4

0

5

10

15

20

25

30

A
v
e
ra
g
e
 e
x
e
c
u
ti
o
n
 t
im

e

Optimal Predicted LCM FP-Growth Eclat

• The predicted algorithm is close to optimal (12.5% worse)

• The predicted algorithm is significantly better than LCM(65.3%)

C Jiang, PhD thesis

www.informatics.uiuc.edu

16

Selected features

� Size
– The number of ‘1’s in the bit
matrix

� Density
– Number of ‘1’s divided by number
of cells

� Height:
– 1 – support threshold / density
– An estimate of how much room
for the support to decrease to the
threshold

� Similarity:
– How similar transactions are to
each other

1 1 1 0 0 1
1 1 1 0 0 1
1 1 0 1 0 1
1 1 0 1 0 0
0 1 0 0 1 1

Example:

Size=18

Density = 18/30 = 0.6

Height = 1-s/density
= 1 – 0.2/0.6 =2/3

www.informatics.uiuc.edu

17

Implementation Selection

� We represent implementation choices via tuning patterns -
descriptions of solutions to common software performance
optimization problems that are applicable to multiple algorithms

– Lexicographic ordering

– Aggregation

– Compaction

– Wave-front prefetch

– Tiling for sparse arrays

– SIMDization

� Probably need richer ontology (relations, constraints, expert
knowledge)

� Classification problem: select best set of tuning patterns

– Used SVM; GA probably more appropriate

www.informatics.uiuc.edu

18

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DS1 (73) DS2 (159) DS3 (93) DS4 (35)

lex pref reorg tile lex+reorg+pref+tile best

all

all

all

lex+pref+reorg

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DS1 (77) DS2 (169) DS3 (90) DS4 (36)

all
all

lex+tile

pref+

reorg

Speedups of LCM

� Good speedup (up to 2.1)

� ALL does not always win!

� Optimal set of tuning patterns is machine and data dependent

Intel AMD

www.informatics.uiuc.edu

19

Prediction results – LCM

16

76

363

40

45

50

55

60

65

70

A
v
e
ra
g
e
 e
x
e
c
u
ti
o
n
 t
im
e
 i
n
 s
e
c
o
n
d
s

optimal

predicted

original

tile

all

119.6

87.7

Number of times that each

code version is the fastest Average execution time

� Prediction close to “optimal” (oracle)

�Prediction overhead is negligible

M Wei, PhD thesis, ICDE07

www.informatics.uiuc.edu

20

Summary

� Main obstacle to petascale datamining is
dreaming of grand challenges that need it

� Petascale datamining requires tuned code

– Node performance (locality) + scalability

� Should develop tunable code generators to adapt
to platform and data

– Need good training sets!

� Code tuning is a very interesting classification
problem

www.informatics.uiuc.edu

21

Questions?

www.informatics.uiuc.edu

22

Similarity definition

� “Similarity”: how similar transactions are to each other

� “Normalized hamming distance” (pair-wise similarity):

– Given two transactions, their “normalized hamming distance”
is the number of differences divided by the total number of
unique ones.

– Example:

1 1 0 1 0 1

0 1 0 0 1 1

T1

T2

Therefore, distance(T1,T2) = 3/5 = 0.6

Difference = 3,

the number of unique ones is 5

www.informatics.uiuc.edu

23

Similarity feature definition

� Normalized hamming distance defines pair-wise distance, but we
need a global measure of similarity among all transactions.

� Approach – “Average linkage clustering”
– Start with n transactions, each as a cluster
– Merge the two closest into one new cluster
– Repeat merging until one cluster left.

� “Similarity” = average value of the n-1 clustering distances

www.informatics.uiuc.edu

24

 1
 1

0
 1

00
 1

00
0

 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

 1
 1

0
 1

00
 1

00
0

 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

accidents chess

 1
 1

0
 1

00
 1

00
0

 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22
 0.24

webdocs

 1
 1

0
 1

00
 1

00
0

 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75

pumsb

 1
 1

0
 1

00
 1

00
0

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Pumsb_star

 1
 1

0
 1

00
 1

00
0

 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8

connect

Prediction results on real-world datasets

www.informatics.uiuc.edu

25

 0
.1

 1
 1

0
 1

00
 1

00
0

 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05

mushroom

 0
.1

 1
 1

0
 1

00
 1

00
0

 0.001

 0.0015

 0.002

 0.0025

 0.003
retail

 1
 1

0
 1

00

 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

kosarak

 1
 1

0
 1

00
 1

00
0

 0 0.0005
 0.001
 0.0015
 0.002
 0.0025
 0.003
 0.0035
 0.004

BMS-POS

 0
.1

 1
 1

0
 1

00
 1

00
0

 0.00048
 0.0005
 0.00052
 0.00054
 0.00056
 0.00058
 0.0006
 0.00062
 0.00064
 0.00066
 0.00068

BMS-WebView1

 0
.1

 1
 1

0
 1

00
 1

00
0

 0.00045
 0.0005
 0.00055
 0.0006
 0.00065
 0.0007
 0.00075
 0.0008
 0.00085
 0.0009
 0.00095

BMS-WebView2

Prediction results on real-world datasets

www.informatics.uiuc.edu

26

50%

38.89%

11.11%

LCM FP-Growth Eclat

99. 53%

0. 08%

0. 38%

99. 53%

0. 08%

0. 38%

Using synthetic data for training

� IBM Quest dataset
Generator

– Widely used in
data mining
research

� Problem:

– The generated
dataset is not
representative of
real-world data

Real-world datasets

Synthetic datasets

Best algorithm

www.informatics.uiuc.edu

27

Item frequency curve

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
or

m
al

iz
ed

 s
up

po
rt

Items in decreasing frequency order

connect
mushroom

T10I4D100K
T40I10D100K

www.informatics.uiuc.edu

28

Using modified IBM generator to produce
algorithm variability

56.58%

23.39%

20.03%

50%

38.89%

11.11%

Modified Synthetic datasets Real-world datasets

www.informatics.uiuc.edu

29

Lexicographic ordering of transactions

� Preprocess original database by reordering transactions
in lexicographic order
– Alphabet: items in descending frequency order

� Improves locality of accesses (LCM & FP_Growth);
reduces computation (Eclat)

� Overhead of lexicographic ordering

www.informatics.uiuc.edu

30

Lexicographic ordering in LCM

� Spatial locality of traversal
is improved (fewer jumps)

– Locality improved for
most frequent items

– Order mostly preserved
for projected databases
– ordering overhead
amortized over multiple
traversals

c f

c f a

c f b

a

d e

c f a b d e

c f a b d e
1

2

3

4

5

4

5

1 1

2

3

4

5

2

3

5

1 2

5

4

53

5

c f a

d e

c f a b d e

c f a b d e
1

2

3

4

5

3

5

1 1

2

3

4

2

3

4

1 3

4

3

52

3

c f a

c f b

www.informatics.uiuc.edu

31

31

c f a b d e

0 1 1 1 0 0 0

1 1 1 0 1 0 0

2 1 1 1 0 0 0

3 0 0 0 0 1 1

4 1 1 1 1 1 1

∩ � Transactions for {a,c}
Rows are switched after

lexicographic ordering

1s becomes contiguous for c

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 1 1

1 1 0 1 0 0

0 0 0 0 1 1

Mark first 1

Mark last 1

{a} {c}

� Range reduction reduces computation

Lexicographic ordering in Eclat

www.informatics.uiuc.edu

32

Lexicographic ordering
– project() in FP-Growth

� Tree is constructed by inserting transactions from the
original database one by one

� Lexicographic ordering improve the temporal locality for
insertions.

c

f

a

(2)

Pseudo node

b

d

e

(1)

Already

in the

cache

www.informatics.uiuc.edu

33

Lexicographic ordering
– project() in FP-Growth

� Access pattern: From an intermediate node to root

� More (parent, child) pairs are contiguous in the memory – better
spatial locality

(parent, child) are

contiguous in memory

c

f

a

b

d

e

b

d

e

(2)

(1)

(1)
(1)

c

f

a

b

d

e

b

d

e

(2)

(1)

(1)
Pseudo node

Assuming nodes allocated

consecutively are

contiguous in memory.

www.informatics.uiuc.edu

34

Wave-front prefetch

Array of short linked lists

� Prefetch pointers from
different linked-lists in one
iteration

� Hides memory latency

� Increases register pressure

Can be used even if lists are of
different length

2 iterations between

prefetch and use

I3:

I4:

I5:

www.informatics.uiuc.edu

35

35

Tiling (LCM)

�Improves temporal locality
�Slightly increases instruction count and memory pressure

www.informatics.uiuc.edu

36

Programming patterns applied

