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Outline

� How a Supercomputer looks like in > 2010

� What it takes to run a DM code on such a 
platform

� How DM can help supercomputing
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Large NSF Funded Supercomputers 
beyond 2010 

� One Petascale platform -- Blue Waters at NCSA, U Illinois

– Sustained performance: petaflop range

– Memory: petabyte range

– Disk: 10’s petabytes

– Archival storage: exabyte range

� Multiple 1/4 scale platforms at various universities

� Available to NSF-funded “grand challenge” teams on a 
competitive basis

� My talk: What it takes to mine data at such scale

� Your job: Think big
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The Uniprocessor Crisis

� Manufacturers cannot increase clock rate anymore (power 
problem)

� Computer architects have run out of productive ideas on 
how to use more transistors to increase single thread 
performance

– Diminishing return on caches

– Diminishing return on instruction-level parallelism

� Increased processor performance will come only from the 
increase on number of cores per chip

Petascale = 250K -- 1M threads

Need algorithms with massive levels of parallelism
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Average # Processors Top 500 System
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Mileage is Less than Advertised
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It’s the Memory, Stupid
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The Memory Wall and Palliatives

� The problem

– Memory bandwidth is limited (cost)

– Compilers cannot issue enough concurrent loads to fill 
the memory pipe

– Compilers cannot issue loads early enough to avoid 
stalls

� Solutions

– Multicore and vector operations -- to fill the pipe 
Simultaneous multithreading -- to tolerate latency

– Need even higher levels of parallelism!
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Solutions to the Memory Wall

� Caching and locality

– Need algorithms with good locality

� Split communication

– Memory prefetch (local memory)

– Put/get (remote memory)

– Need programmed communication (not necessarily 
message-passing)

� N.B.: Computer power is essentially free; you pay for 
storing and moving data

– Accelerators (GPUs, FPGAs, Cell processors) enhance a 
non-critical resource, and will often have a negligible 
impact on overall performance
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Load Balancing

� Problem: Amount of computation in DM kernels heavily 
data dependent -- work partitioning results in load 
imbalances

� Hard solution: develop good work predictors and do 
explicit, static load balancing

� Easy solution: use system with task virtualization  and 
dynamic task migration 

– E.g., AMPI (Kale, http://charm.cs.uiuc.edu/) -- scalable, 
negligible (often negative) overheads

– Overhead of task migration is few seconds, at worse

� Parallel file system is shared all

– Task virtualization essential for modularity and 
ease of programming
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Code Tuning

� Is essential when using a Petascale system

– 1 hour = $5K - $10K

� Is data dependent (more so with Datamining than with 
many applications)

� Is platform dependent
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Relative Performance of Frequent Item Mining 
Codes is Input Dependent
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FIMI workshop needs some thinking…
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A Schematic View of Performance 
Tuning

All three should be platform 
and data dependent1. Algorithm 

selection

(LCM, 

FP_Growth, 

Eclat,…)

2. Implementation 

selection
(choice of data 

structures…)

3. Automatic 

tuning
(compiler,

runtime)
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Algorithm Selection is a Classification 
Problem

Generated 

datasets

Input set

generator

Empirical

evaluation

Alg.

pool

Labeled 

features

SVM

learning

Platform specific

SVM model Alg.
Run

Alg.

Input

Feature

Training stage Execution stage

predict

•Can be solved using 

supervised ML

•Smart part: choice of 

feature vector that  can 

be computed fast and 

“works”
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Results: Average execution time
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Optimal Predicted LCM FP-Growth Eclat

• The predicted algorithm is close to optimal (12.5% worse)

• The predicted algorithm is significantly better than LCM(65.3%)

C Jiang, PhD thesis
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Selected features

� Size
– The number of ‘1’s in the bit 
matrix

� Density
– Number of ‘1’s divided by number 
of cells

� Height:
– 1 – support threshold / density
– An estimate of how much room 
for the support to decrease to the 
threshold

� Similarity:
– How similar transactions are to 
each other

1 1 1 0 0 1
1 1 1 0 0 1
1 1 0 1 0 1
1 1 0 1 0 0
0 1 0 0 1 1

Example:

Size=18

Density = 18/30 = 0.6

Height = 1-s/density
=  1 – 0.2/0.6 =2/3
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Implementation Selection

� We represent implementation choices via tuning patterns -
descriptions of solutions to common software performance 
optimization problems that are applicable to multiple algorithms

– Lexicographic ordering

– Aggregation

– Compaction

– Wave-front prefetch

– Tiling for sparse arrays

– SIMDization

� Probably need richer ontology (relations, constraints, expert 
knowledge)

� Classification problem: select best set of tuning patterns 

– Used SVM; GA probably more appropriate
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Speedups of LCM

� Good speedup (up to 2.1)

� ALL does not always win!

� Optimal set of tuning patterns is machine and data dependent

Intel AMD
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Prediction results – LCM
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� Prediction close to “optimal” (oracle)

�Prediction overhead is negligible

M Wei, PhD thesis, ICDE07 



www.informatics.uiuc.edu

20

Summary

� Main obstacle to petascale datamining is 
dreaming of grand challenges that need it

� Petascale datamining requires tuned code

– Node performance (locality) + scalability

� Should develop tunable code generators to adapt 
to platform and data

– Need good training sets!

� Code tuning is a very interesting classification 
problem 
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Questions?
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Similarity definition

� “Similarity”: how similar transactions are to each other

� “Normalized hamming distance” (pair-wise similarity):

– Given two transactions, their “normalized hamming distance”
is the number of differences divided by the total number of 
unique ones. 

– Example:

1 1 0 1 0 1

0 1 0 0 1 1

T1

T2

Therefore, distance(T1,T2) = 3/5 = 0.6

Difference = 3,

the number of unique ones is 5
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Similarity feature definition

� Normalized hamming distance defines pair-wise distance, but we 
need a global measure of similarity among all transactions.

� Approach – “Average linkage clustering”
– Start with n transactions, each as a cluster
– Merge the two closest into one new cluster
– Repeat merging until one cluster left.

� “Similarity” = average value of the n-1 clustering distances 
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Prediction results on real-world datasets
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50%
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Using synthetic data for training

� IBM Quest dataset 
Generator

– Widely used in 
data mining 
research

� Problem:

– The generated 
dataset is not 
representative of 
real-world data

Real-world datasets

Synthetic datasets

Best algorithm
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Item frequency curve
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Using modified IBM generator to produce 
algorithm variability

56.58%

23.39%

20.03%

50%

38.89%

11.11%

Modified Synthetic datasets Real-world datasets
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Lexicographic ordering of transactions

� Preprocess original database by reordering transactions 
in lexicographic order
– Alphabet: items in descending frequency order

� Improves locality of accesses (LCM & FP_Growth); 
reduces computation (Eclat)

� Overhead of lexicographic ordering
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Lexicographic ordering in LCM

� Spatial locality of traversal 
is improved (fewer jumps) 

– Locality improved for 
most frequent items

– Order mostly preserved 
for projected databases 
– ordering overhead 
amortized over multiple 
traversals
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c f a b d e

0 1 1 1 0 0 0

1 1 1 0 1 0 0

2 1 1 1 0 0 0

3 0 0 0 0 1 1

4 1 1 1 1 1 1

∩ � Transactions for {a,c}
Rows are switched after 

lexicographic ordering 

1s becomes contiguous for c

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 1 1

1 1 0 1 0 0

0 0 0 0 1 1

Mark first 1

Mark last 1

{a} {c}

� Range reduction reduces computation

Lexicographic ordering in Eclat
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Lexicographic ordering 
– project() in FP-Growth

� Tree is constructed by inserting transactions from the 
original database one by one

� Lexicographic ordering improve the temporal locality for 
insertions.
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Lexicographic ordering 
– project() in FP-Growth

� Access pattern: From an intermediate node to root

� More (parent, child) pairs are contiguous in the memory – better 
spatial locality

(parent, child) are 

contiguous in memory
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Wave-front prefetch

Array of short linked lists

� Prefetch pointers from 
different linked-lists in one 
iteration

� Hides memory latency

� Increases register pressure

Can be used even if lists are of 
different length

2 iterations between 

prefetch and use

I3:

I4:

I5:
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Tiling (LCM)

�Improves temporal locality
�Slightly increases instruction count and memory pressure
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Programming patterns applied


