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Motivation

» Security: Geo-spatial Intelligence

 Surveillance:

— Public Safety: Crime mapping & analysis
— Public Health: (Emerging) Disease hotspoi

* Privacy

— Spatial location vs. HIPPA

— Containing spread of infectious disease
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Objectives, State of the Art

0  Objectives:

O to accurately track, monitor, and predict human activities

O  State of the Art

0 Environmental Criminology
0 Routine Activity Theory (RAT), Crime Pattern Theory (CPT)

O Spatial Data Analysis

O Statistical, e.g. Knox test, Spatial Data Mining
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Limitations of State of the Art

do not adequately model richer temporal semantics
* beyond space-time interaction (Knox test)

do not satisfactorily explain the cause of detected hot spot
locations on spatial networks,
e such as roads, trains, ...

do not effectively model heterogeneities

* across spatial networks

* ¢.g. multi-modal urban transportation modes (such as
light-rail subways and roads).



1: Spatio-Temporal (ST) Nature of Patterns

State of the Art: Environmental Criminology
* Spatial Methods: Hotspots, Spatial Regression
* Space-time interaction (Knox test)

Critical Barriers: richer ST semantics
» Ex. Trends, periodicity, displacement

Issues:
e 1: Categorize pattern families
* 2 :Quantify: interest measures
* 3: Design scalable algorithms
* 4: Evaluate with crime datasets
* 5: Generalize beyond crimes

Challenges: Trade-off b/w

 Semantic richness and
* Scalable algorithms @sentient  &Maplnfo




Co-occurrence in space and time!
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Co-occurring object-types
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State of the Art: Environmental Criminology

2: Activites on Urban Infrastructure ST Networks

Largely geometric Methods

Few Network Methods: Journey to Crime (J2C)

Critical Barriers:

Scale: Houston — 100,000 crimes / year

Network based explanation
Spatio-temporal networks

Issues:

Challenges: Key assumptions violated!
Ex. Prefix optimality of shortest paths
Can’t use Dijktra’s, A*, etc.

1: Network based explanatory models
2: Scalable algorithms for J2C analysis

3: ST Models for Networks
4: ST Network Patterns
5: Validation

(a) Input: Pink lines connect
crime location & criminal’s

residence
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(b) Output: Journey- to-Crime
(thickness = route popularity)
Source: Crimestat



Hotspots: Euclidean vs. Streets

- Houston Crime Dataset
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Hot Spots : CrimeStat using K Means Mean Streets

clustering for 15 clusters

« Traditional Hotspots:
— Empty space
» Desirable:
— Network based methods
— Challenge: Statistics on networks



Distarcs ko open watar

Challenge 1: Is |.1.D. assumption valid?

.«
e,
fdze=h lanof
Mast sitas
a Fuil 40 1] -1} 1 130 141 L]
= B3T3
144 18

Nest locations

: "Distance to"open Water ™

Wntar dapth varshon soroas manhled

wag m-romn Ha

a Ri] =1l ab AL C] ab ™ B ab

Vegetation durability Water depth



Autocorrelation

First Law of Geography

— “All things are related, but nearby things are more related than distant
things. [Tobler, 1970]”

Wikile hlcize -fo spatiel sutmcometation B Vegexhan oz Euian 3onoss 1he marshiand

Pixel property with independent identical Vegetation Durability with SA
distribution

Autocorrelation
— Traditional i.i.d. assumption is not valid
— Measures: K-function, Moran’s |, Variogram, ...



Implication of Auto-correlation

Name Model Classification
Accuracy

Classical Linear Regression y =xp +¢ Low

Spatial Auto-Regression y =pWy+ xp+e High

o : the spatial auto - regression (auto - correlation) parameter

W :n - by - n neighborhood matrix over spatial framework

Computational Challenge:

Computing determinant of a very large matrix
in the Maximum Likelthood Function:

nIn2r) nln(c?)

- SSE

2




Research Needs in Location Prediction

 Additional Problems

— Estimate W for SAR and MRF-BC

— Scaling issue in SAR

e Scale difference:

oWy vs. X3

— Spatial error measure: e.g., avg, dist(actual, predicted)

A
b
A A
(a) (b)
Actual Sites Pixels with
actual sites

P
PP A A
P|P
A A A A
(C) (d)
Prediction 1 Prediction 2.

Spatially more accurate
than Prediction 1

Lepend

® = nest location

A = sctual nest in pixel

P =predicted nest in pixel




Challenge 2: Continuity

« Association rule e.g. (Diaperin T => Beerin T)

Transaction

ltems Bought

1

{socks, e , Milk, E"‘l beef, eqgq, ...}

2 {pillow, E toothbrush, ice-cream, muffin, ...}
3 { o= | E pacifier, formula, blanket, ...}
n {battery, juice, beef, egg, chicken, ...}

— Support: probability (Diaper and Beer in T) = 2/5

— Confidence: probability (Beer in T | Diaper in T) = 2/2
« Algorithm Apriori [Agarwal, Srikant, VLDB94]

— Support based pruning using monotonicity
 Note: Transaction is a core concept!




Transactions - Neighborhoods

Q? Which Item-types co-occur in space (and time) ?
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Co-location

. A Neighborhood based Approach

Association rules

Colocation rules

underlying space

discrete sets

continuous space

item-types item-types events /Boolean spatial features
collections Transactions neighborhoods
prevalence measure support participation index

conditional probability
measure

PrAINT|BinT]

Pr[AinN(L)|BatL]

Challenges:
1. Computational

Scalability

Needs a large number of spatial join, 1 per candidate colocation

2. Spatio-temporal Semantics
Spatio-tempotal co-occurrences
Emerging colocations




Challenge 3: Spatial Anamolies

« Example — Sensor 9

— Issue 1: Will sensor 9 be detected by traditional outlier detection ?
* New tests: variograms, scatter plot, moran scatter plot,

Average Traffic Volume(Time v.s. Station)
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Challenge: Multiple Spatial Outlier Detection

Issue 2: A bad apple makes
neighbors look anamolous

Expected Outliers: S1, S2, S3

Top 3 items flagged by traditional
approaches: E1, E2, S1

Challenge:

Computational Scalability for detecting
multiple spatial anamolies

Courtesy: C.T.Lu, Virginia Tech

Number of neighbors: k=3
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3: Multi-Jurisdiction Multi-Temporal (MJMT) Data

State of the Art:
» Spatial, ST ontologies
* Few network ontologies

Critical Barriers:
» Heterogeneity across networks

» Uncertainty — map accuracy, gps, ...

Issues:
* 1. Ontologies: Network activities
* 2. Integration methods
e 3. Location accuracy models
* 4. Evaluation

Challenges:
 Test datasets
 Evaluation methods
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