Spatial & Spatio-temporal Data Mining Challenges

By

Shashi Shekhar, University of Minnesota

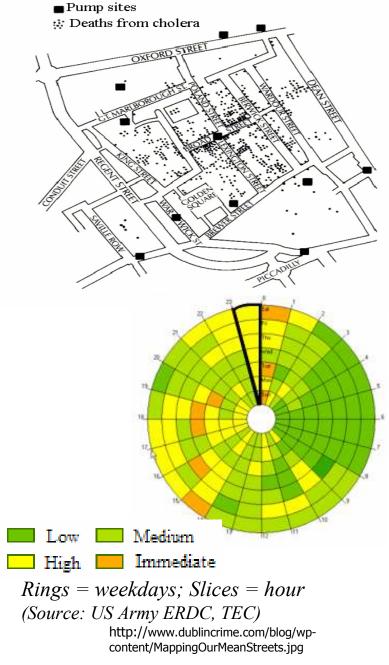
Bhavani Thuraisingham, Latifur Khan U of.Texas, Dallas

NSF Symposium on NGDM and CDI Session of Security, Surveillance and Privacy

October 11th, 2007

Motivation

- Security: Geo-spatial Intelligence
- Surveillance:
 - Public Safety: Crime mapping & analysis
 - Public Health: (Emerging) Disease hotspot
- Privacy
 - Spatial location vs. HIPPA
 - Containing spread of infectious disease

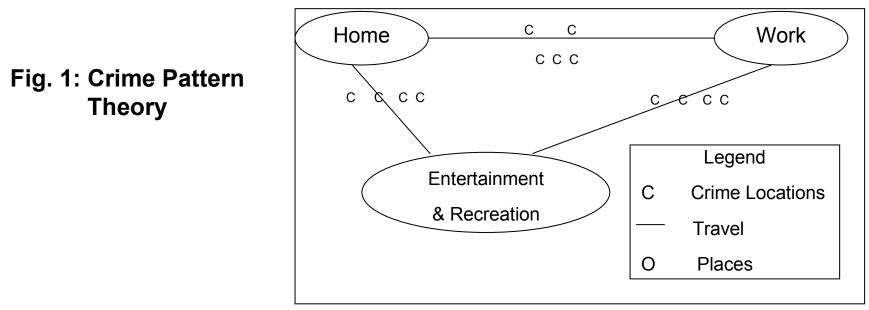


http://www.esri.com/news/arcuser/0405/ss_crimestats2of2.html

Objectives, State of the Art

- Objectives:
 - □ to accurately track, monitor, and predict human activities
- □ State of the Art
 - Environmental Criminology
 Routine Activity Theory (RAT), Crime Pattern Theory (CPT)
 - Spatial Data Analysis

Statistical, e.g. Knox test, Spatial Data Mining

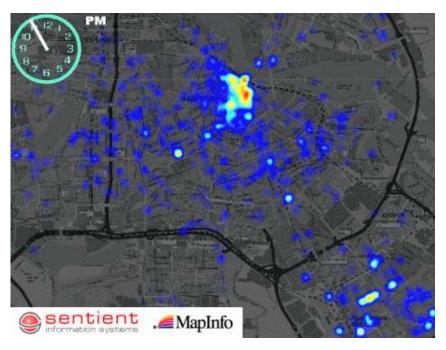


Limitations of State of the Art

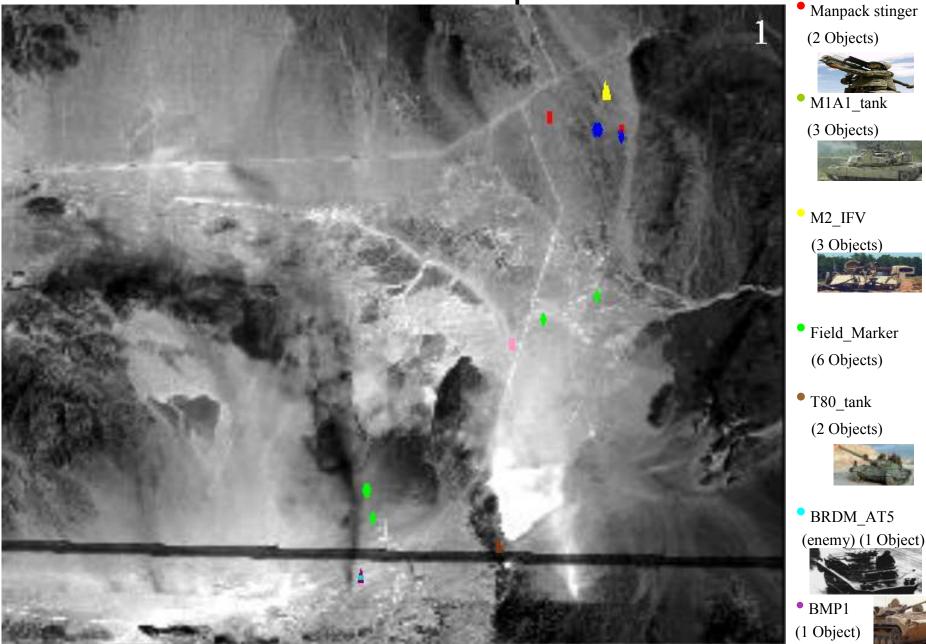
- do not adequately model richer temporal semantics
 - beyond space-time interaction (Knox test)
- do not satisfactorily explain the cause of detected hot spot locations on spatial networks,
 - such as roads, trains, ...
- do not effectively model heterogeneities
 - across spatial networks
 - e.g. multi-modal urban transportation modes (such as light-rail subways and roads).

1: Spatio-Temporal (ST) Nature of Patterns

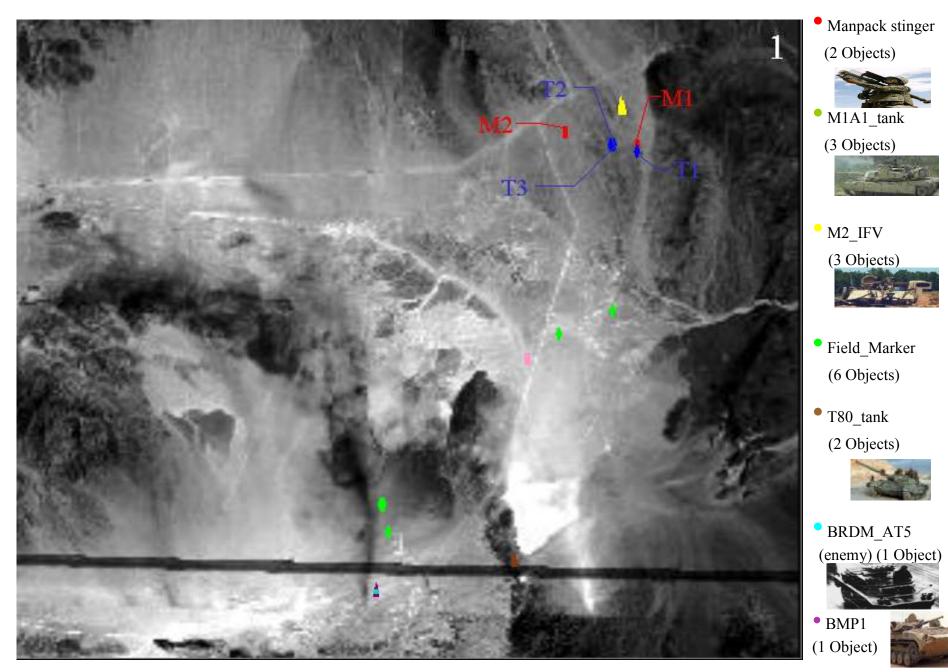
- State of the Art: Environmental Criminology
 - Spatial Methods: Hotspots, Spatial Regression
 - Space-time interaction (Knox test)
- Critical Barriers: richer ST semantics
 - Ex. Trends, periodicity, displacement
- Issues:
 - 1: Categorize pattern families
 - 2 : Quantify: interest measures
 - 3: Design scalable algorithms
 - 4: Evaluate with crime datasets
 - 5: Generalize beyond crimes
- Challenges: Trade-off b/w
 - Semantic richness and
 - Scalable algorithms



Co-occurrence in space and time!

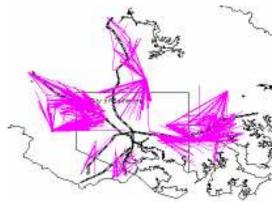


Co-occurring object-types



2: Activites on Urban Infrastructure ST Networks

- State of the Art: Environmental Criminology
 - Largely geometric Methods
 - Few Network Methods: Journey to Crime (J2C)
- Critical Barriers:
 - Scale: Houston 100,000 crimes / year
 - Network based explanation
 - Spatio-temporal networks
- Issues:
 - 1: Network based explanatory models
 - 2: Scalable algorithms for J2C analysis
 - 3: ST Models for Networks
 - 4: ST Network Patterns
 - 5: Validation
- Challenges: Key assumptions violated!
 - Ex. Prefix optimality of shortest paths
 - Can't use Dijktra's, A*, etc.

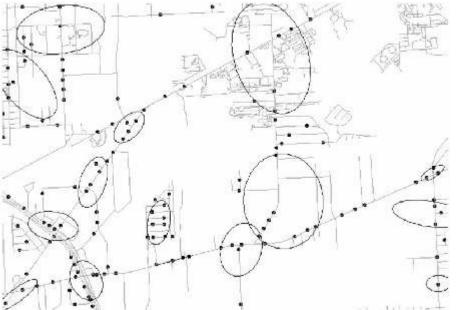


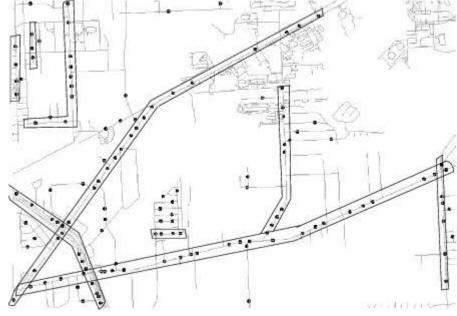
(a) Input: Pink lines connect crime location & criminal's residence

(b) Output: Journey- to-Crime (thickness = route popularity) Source: Crimestat

Hotspots: Euclidean vs. Streets

Houston Crime Dataset

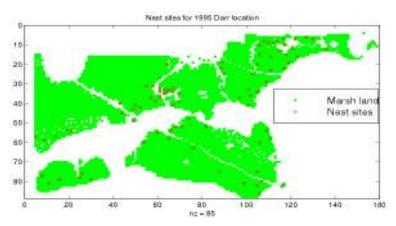




Hot Spots : CrimeStat using K Means clustering for 15 clusters Mean Streets

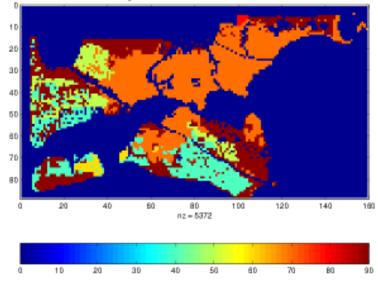
- Traditional Hotspots:
 - Empty space
- Desirable:
 - Network based methods
 - Challenge: Statistics on networks

Challenge 1: Is I.I.D. assumption valid?



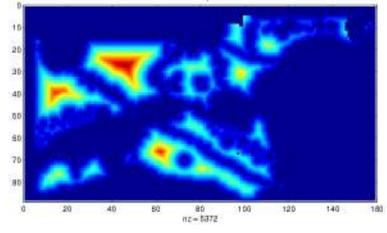
Nest locations

Vegetation distribution across the marshland



Vegetation durability

Distance to open water



¹⁰ Distance to[®]open water ⁵⁰

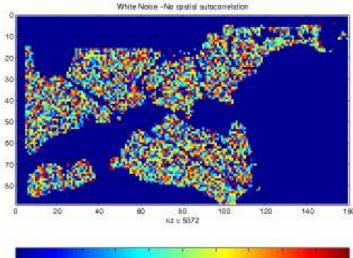
Water depth variation across marahlard

10 20 30 40 50 60 70 B0 90

Water depth

Autocorrelation

- First Law of Geography
 - "All things are related, but nearby things are more related than distant things. [Tobler, 1970]"



Pixel property with independent identical distribution

ns:

0.5

• Autocorrelation

112

0.3

0.4

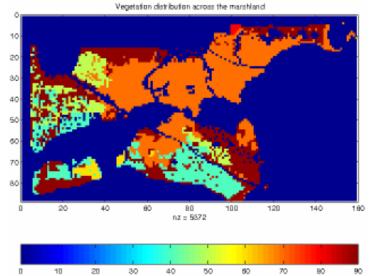
- Traditional i.i.d. assumption is not valid

0.7

0.8

0.9

– Measures: K-function, Moran's I, Variogram, ...



Vegetation Durability with SA

Implication of Auto-correlation

Name	Model	Classification Accuracy
Classical Linear Regression	$\mathbf{y} = \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	Low
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	High

 ρ : the spatial auto - regression (auto - correlation) parameter W: *n* - by - *n* neighborhood matrix over spatial framework

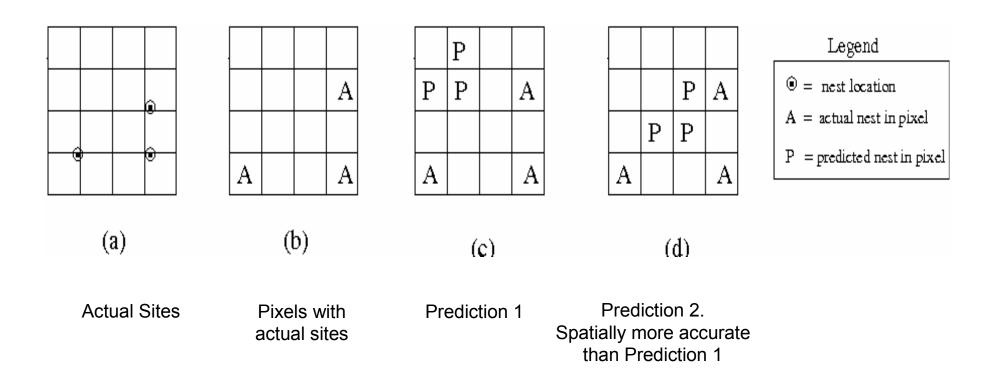
Computational Challenge:

Computing determinant of a very large matrix in the Maximum Likelihood Function:

$$\ln(L) = \left| \ln \left| \mathbf{I} - \rho \mathbf{W} \right| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE$$

Research Needs in Location Prediction

- Additional Problems
 - Estimate W for SAR and MRF-BC
 - Scaling issue in SAR
 - Scale difference: $\rho Wy vs. X\beta$
 - Spatial error measure: e.g., avg, dist(actual, predicted)



Challenge 2: Continuity

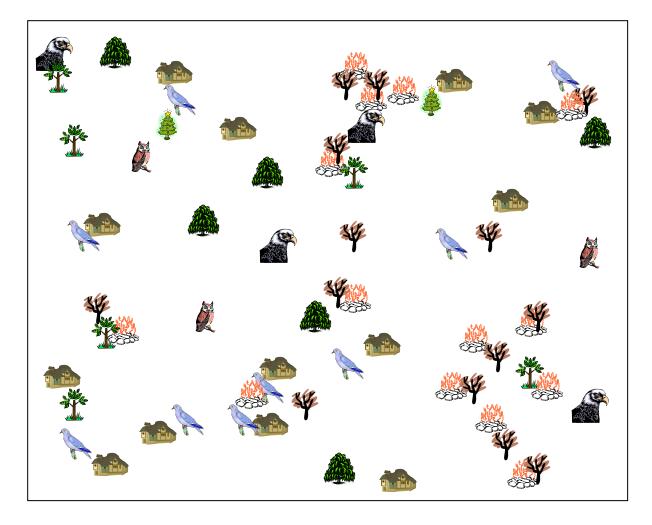
• Association rule e.g. (Diaper in T => Beer in T)

Transaction	Items Bought		
1	{socks, 📰 , milk, 🏾 🎒 beef, egg,}		
2	{pillow, [] toothbrush, ice-cream, muffin,}		
3	{ 🔤 , 📋, pacifier, formula, blanket, …}		
n	{battery, juice, beef, egg, chicken,}		

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2
- Algorithm Apriori [Agarwal, Srikant, VLDB94]
 - Support based pruning using monotonicity
- Note: Transaction is a core concept!

Transactions \rightarrow Neighborhoods

Q? Which Item-types co-occur in space (and time)?



Co-location: A Neighborhood based Approach

	Association rules	Colocation rules
underlying space	discrete sets	continuous space
item-types	item-types	events /Boolean spatial features
collections	Transactions	neighborhoods
prevalence measure	support	participation index
conditional probability measure	Pr.[A in T B in T]	Pr.[A in N(L) B at L]

Challenges:

1. Computational Scalability

Needs a large number of spatial join, 1 per candidate colocation

2. Spatio-temporal Semantics

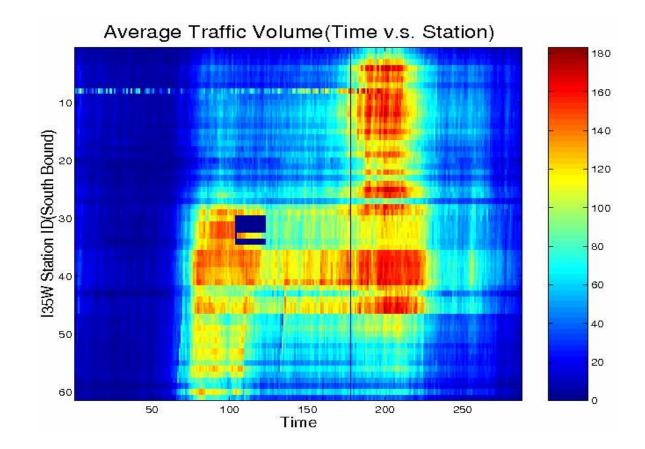
Spatio-tempotal co-occurrences

Emerging colocations

• • •

Challenge 3: Spatial Anamolies

- Example Sensor 9
 - Issue 1: Will sensor 9 be detected by traditional outlier detection ?
 - New tests: variograms, scatter plot, moran scatter plot,



Challenge: Multiple Spatial Outlier Detection

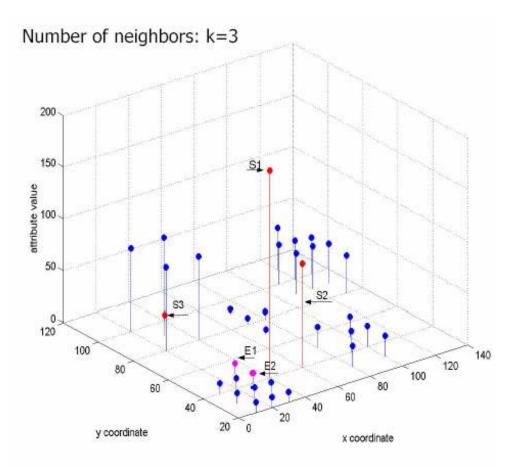
Issue 2: A bad apple makes neighbors look anamolous

Expected Outliers: S1, S2, S3

Top 3 items flagged by traditional approaches: E1, E2, S1

Challenge:

Computational Scalability for detecting multiple spatial anamolies



3: Multi-Jurisdiction Multi-Temporal (MJMT) Data

- State of the Art:
 - Spatial, ST ontologies
 - Few network ontologies
- Critical Barriers:
 - Heterogeneity across networks
 - Uncertainty map accuracy, gps, ...
- Issues:
 - 1. Ontologies: Network activities
 - 2. Integration methods
 - 3. Location accuracy models
 - 4. Evaluation
- Challenges:
 - Test datasets
 - Evaluation methods

