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Frequent Pattern Mining

� Frequent pattern mining has been studied for over a decade 

with tons of algorithms developed

� Apriori (SIGMOD’93, VLDB’94, …)

� FPgrowth (SIGMOD’00), EClat, LCM, …

� Extended to sequential pattern mining, graph mining, …

� GSP, PrefixSpan, CloSpan, gSpan, …

� Applications: Dozens of interesting applications explored

� Association and correlation analysis

� Classification (CBA, CMAR, …, discrim. feature analysis)

� Clustering (e.g., micro-array analysis)

� Indexing (e.g. g-Index)



The Problem of Frequent 

Itemset Mining

� First proposed by Agrawal et al. in 1993 [AIS93].

�Itemset X = {x1, …, xk}

�Given a minimum support s, 

discover all itemsets X, 

s.t. sup(X) >= s

� sup(X) is the percentage of

transactions containing X

� If s=40%, X={A,B} is a 

frequent itemset since 

sup(X)=3/7 > 40%
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A Binary Matrix Representation

� We can also use a 

binary matrix to 

represent a transaction 

database.

� Row: Transactions

� Column: Items

� Entry: Presence/absence 

of an item in a 
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A Noisy Data Model

� A noise free data model

� Assumption made by all the above algorithms

� A noisy data model

� Real world data is subject to random noise and measurement 

error. For example:

� Promotions

� Special events

� Out-of-stock items or overstocked items

� Measurement imprecision

� The true frequent itemsets could be distorted by such noise.

� The exact itemset mining algorithms will discover multiple 

fragmented itemsets, but miss the true ones.
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Figure1(a). Itemset

without noise

Figure 1(b). Itemset

with noise

Exact mining algorithms 

get fragmented itemsets!



Alternative Models

� Existence of core patterns

� I.E., even under noise, the original pattern can still 

appear with high probability

� Only summary patterns can be derived

� Summary pattern may not even appear in the 

database



The Core Pattern Approach

� Core Pattern Definition
� An itemset x is a core pattern if its exact support in the 
noisy database satisfies

� If an approximate itemset is interesting, it is with 
high probability that it is a core pattern in the noisy 
database. Therefore, we could discover the 
approximate itemsets from only the core patterns.

� Besides the core pattern constraint, we use the 
constraints of minimum support,    , and    , as in 
[LPS+06].

10sup,min)sup( ≤≤⋅≥ ααx

c
ε

r
ε



Approximate Itemset Example

� Let                 and 

� For <ABCD>, its exact 
support = 1;

� By allowing a fraction of                                       

noise in a row,              
transaction 10, 30, 60, 70 
all approximately support 
<ABCD>; 

� For each item in <ABCD>, 
in the transaction set {10, 
30, 60, 70}, a fraction of        

0s is allowed.  
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The Approximate Frequent 

Itemset Mining Approach

� Intuition 

� Discover approximate itemsets by allowing “holes” in the 

matrix representation.

� Constraints

� Minimum support s: the percentage of transactions 

containing an itemset

� Row error rate     : the percentage of 0s (item) allowed in 

each transaction

� Column error rate   : the percentage of 0s allowed in 

transaction set for each item
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Algorithm Outlines

� Mine core patterns using 

� Build a lattice of the core patterns

� Traverse the lattice to compute the approximate 

itemsets

10sup,minsup'min ≤≤⋅= αα



A Running Example

� Let the database be 

D,           ,           , 

s=3, and  3
1=α
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Microarray → Co-Expression Network
g
e
n
e
s

conditions

MCM3
MCM7NASP

FEN1

SNRPG
CDC2CCNB1

UNG

Two Issues: 
• noise edges

• large scale

Microarray
Coexpression

Network
Module



~9000 genes 105 x ~(9000 x 9000) = 8 billion edges

...
...

...

transform graph mining

Patterns discovered in multiple graphs are more reliable and significant 

dense

vertexset

Mining Poor Quality Data

Transcriptional 

Annotation



Summary Graph: Concept

...

M networks ONE graph

overlap clustering

Scale Down



Summary Graph: Noise Edges

� Dense subgraphs are accidentally formed by 

noise edges

� They are false frequent dense vertexsets

� Noise edges will also interfere with true 

modules

?
dense subgraphs in 

summary graph

Frequent dense 

vertexsets



Unsupervised Partition: Find a 

Subset
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Frequent Approximate Substrinng
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Limitation on Mining Frequent Patterns:

Mine Very Small Patterns!

� Can we mine large (i.e., colossal) patterns? ― such as just size 

around 50 to 100?  Unfortunately, not!

� Why not? ― the curse of “downward closure” of frequent patterns

� The “downward closure” property

� Any sub-pattern of a frequent pattern is frequent.

� Example.  If (a1, a2, …, a100) is frequent, then a1, a2, …, a100, (a1, a2), (a1, 

a3), …, (a1, a100), (a1, a2, a3), … are all frequent!  There are about 2
100

such frequent itemsets! 

� No matter using breadth-first search (e.g., Apriori) or depth-first search 

(FPgrowth), we have to examine so many patterns

� Thus the downward closure property leads to explosion!



Do We Need Mining Colossal Patterns?

� From frequent patterns to closed patterns and maximal patterns 

� A frequent pattern is closed if and only if there exists no super-pattern 

that is both frequent and has the same support

� A frequent pattern is maximal if and only if there exists no frequent 

super-pattern

� Closed/maximal patterns may partially alleviate the problem but not 

really solve it: We often need to mine scattered large patterns!

� Many real-world mining tasks needs mining colossal patterns

� Micro-array analysis in bioinformatics (when support is low)

� Biological sequence patterns

� Biological/sociological/information graph pattern mining



Colossal Pattern Mining Philosophy

� No hope for completeness

� If the mining of mid-sized patterns is explosive in size, 

there is no hope to find colossal patterns efficiently by 

insisting “complete set” mining philosophy

� Jumping out of the swamp of the mid-sized results

� What we may develop is a philosophy that may jump 

out of the swamp of mid-sized results that are 

explosive in size and jump to reach colossal patterns

� Striving for mining almost complete colossal patterns

� The key is to develop a mechanism that may quickly 

reach colossal patterns and discover most of them



Conclusions

� Most previous work focused on finding exact 

frequent patterns

� There exists a discrepancy between the exact model 

and some real world phenomenon due to

� Noise, perturbation, etc

� Very long pattern mining can be another prohibiting 

problem

� Need to develop new methodologies to find 

approximate frequent patterns


