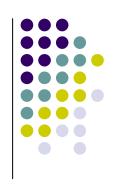
Approximate Frequent Pattern Mining

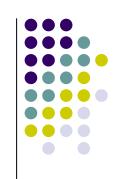
Philip S. Yu¹, Xifeng Yan¹, Jiawei Han², Hong Cheng², Feida Zhu²

¹IBM T.J.Watson Research Center ²University of Illinois at Urbana-Champaign



- Frequent pattern mining has been studied for over a decade with tons of algorithms developed
 - Apriori (SIGMOD'93, VLDB'94, ...)
 - FPgrowth (SIGMOD'00), EClat, LCM, ...
- Extended to sequential pattern mining, graph mining, ...
 - GSP, PrefixSpan, CloSpan, gSpan, ...
- Applications: Dozens of interesting applications explored
 - Association and correlation analysis
 - Classification (CBA, CMAR, ..., discrim. feature analysis)
 - Clustering (e.g., micro-array analysis)
 - Indexing (e.g. g-Index)

The Problem of Frequent Itemset Mining

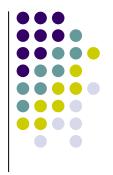


First proposed by Agrawal et al. in 1993 [AIS93].

Transaction-id	Items bought	
10	A, B, C	
20	Α	
30	A, B, C, D	
40	C, D	
50	A, B	
60	A, C, D	
70	B, C, D	

Table 1. A sample transaction database D

- ■Itemset X = {x1, ..., xk}
- •Given a minimum support s, discover all itemsets X, s.t. sup(X) >= s
- sup(X) is the percentage of transactions containing X
- If s=40%, X={A,B} is a frequent itemset since sup(X)=3/7 > 40%



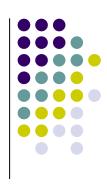
A Binary Matrix Representation

- We can also use a binary matrix to represent a transaction database.
 - Row: Transactions
 - Column: Items
 - Entry: Presence/absence of an item in a transaction

	Α	В	С	D
10	1	1	1	0
20	1	0	0	0
30	1	1	1	1
40	0	0	1	1
50	1	1	0	0
60	1	0	1	1
70	0	1	1	1

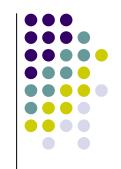
Table 2. Binary representation of D

A Noisy Data Model

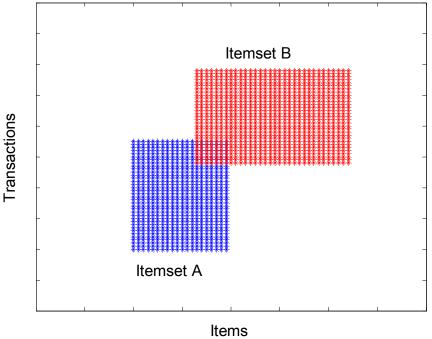


- A noise free data model
 - Assumption made by all the above algorithms
- A noisy data model
 - Real world data is subject to random noise and measurement error. For example:
 - Promotions
 - Special events
 - Out-of-stock items or overstocked items
 - Measurement imprecision
 - The true frequent itemsets could be distorted by such noise.
 - The exact itemset mining algorithms will discover multiple fragmented itemsets, but miss the true ones.

Itemsets With and Without Noise



Exact mining algorithms get fragmented itemsets!



Itemset B

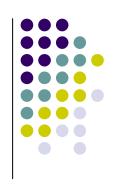
Itemset A

Itemset A

Figure1(a). Itemset without noise

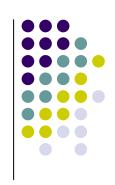
Figure 1(b). Itemset with noise

Alternative Models



- Existence of core patterns
 - I.E., even under noise, the original pattern can still appear with high probability
- Only summary patterns can be derived
 - Summary pattern may not even appear in the database

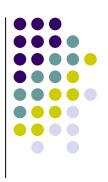
The Core Pattern Approach



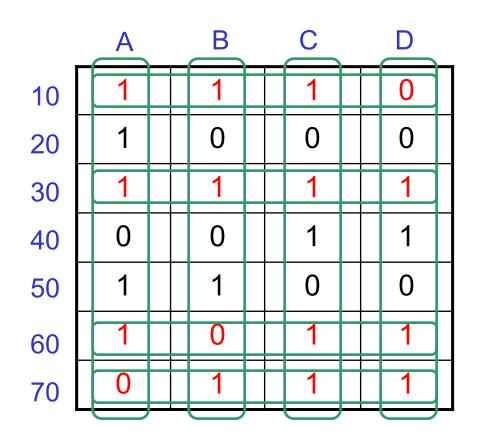
- Core Pattern Definition
 - An itemset x is a core pattern if its exact support in the noisy database satisfies

$$\sup(x) \ge \alpha \cdot \min \sup_{x \in A} 0 \le \alpha \le 1$$

- If an approximate itemset is interesting, it is with high probability that it is a core pattern in the noisy database. Therefore, we could discover the approximate itemsets from only the core patterns.
- Besides the core pattern constraint, we use the constraints of minimum support, ε_r , and ε_c , as in [LPS+06].



- Let $\varepsilon_r = 0.25$ and $\varepsilon_c = 0.25$
- For <ABCD>, its exact support = 1;
- By allowing a fraction of $\varepsilon_r = 0.25$ noise in a row, transaction 10, 30, 60, 70 all approximately support <ABCD>;
- For each item in <ABCD>, in the transaction set {10, 30, 60, 70}, a fraction of $\varepsilon_c = 0.25$ 0s is allowed.



The Approximate Frequent Itemset Mining Approach

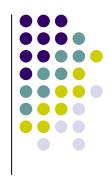
Intuition

 Discover approximate itemsets by allowing "holes" in the matrix representation.

Constraints

- Minimum support s: the percentage of transactions containing an itemset
- Row error rate \mathcal{E}_r : the percentage of 0s (item) allowed in each transaction
- Column error rate _{E_c}: the percentage of 0s allowed in transaction set for each item

Algorithm Outlines



Mine core patterns using

$$\min \sup' = \alpha \cdot \min \sup, 0 \le \alpha \le 1$$

- Build a lattice of the core patterns
- Traverse the lattice to compute the approximate itemsets

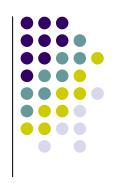
A Running Example

Level 0

Level 1

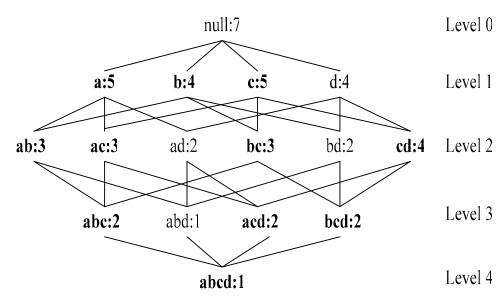
Level 3

Level 4



Let the database be

D,
$$\varepsilon_r = 0.5$$
, $\varepsilon_c = 0.5$, s=3, and $\alpha = \frac{1}{3}$



	Α	В	С	D
10	1	1	1	0
20	1	0	0	0
30 40	1	1	1	1
40	0	0	1	1
50	1	1	0	0
60	1	0	1	1
70	0	1	1	1

Database D

The Lattice of Core Patterns

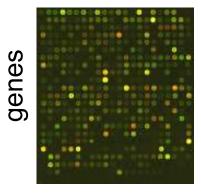
Microarray → **Co-Expression Network**

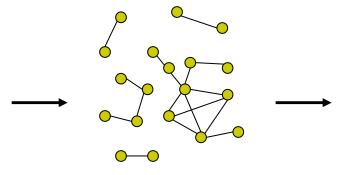
Microarray

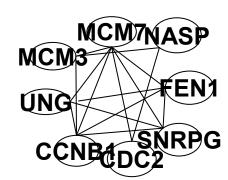
Coexpression Network

Module

conditions



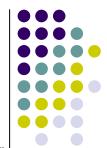




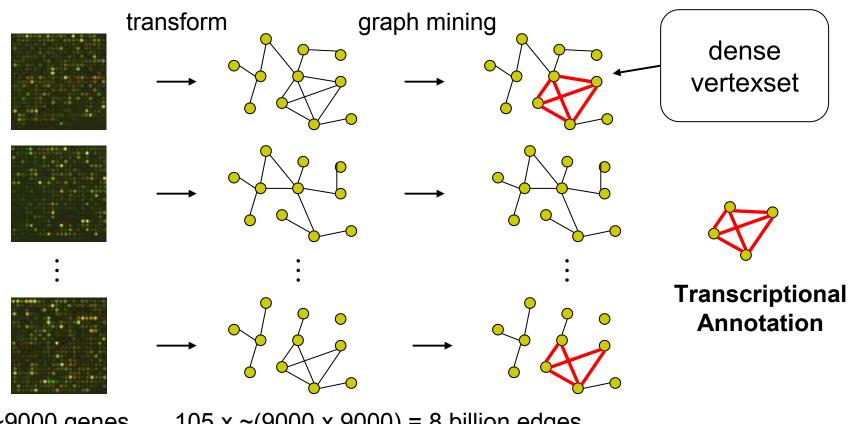
Two Issues:

- noise edges
- large scale

Mining Poor Quality Data



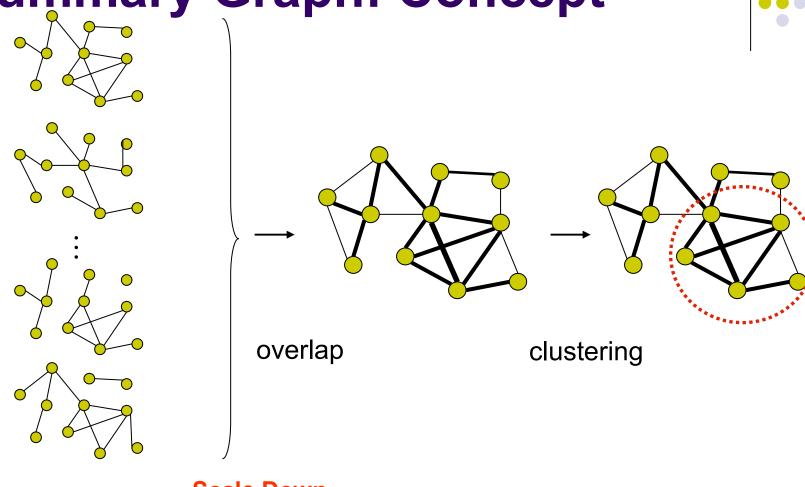
Patterns discovered in multiple graphs are more reliable and significant



~9000 genes

 $105 \times (9000 \times 9000) = 8 \text{ billion edges}$

Summary Graph: Concept



M networks

Scale Down

ONE graph

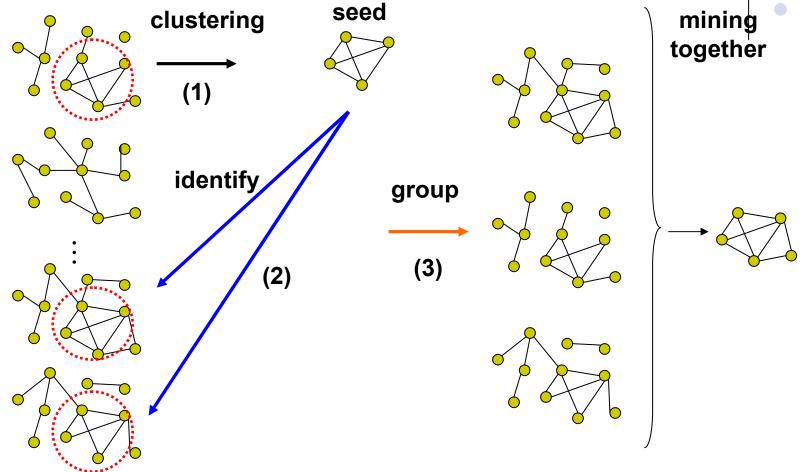
Summary Graph: Noise Edges

Frequent dense vertexsets

dense subgraphs in summary graph

- Dense subgraphs are accidentally formed by noise edges
- They are false frequent dense vertexsets
- Noise edges will also interfere with true modules

Unsupervised Partition: Find a Subset



Frequent Approximate Substrinng

S1 = ATCCGTACAGTTCAGTTGCA

S2 = ATCCGTACAGTTCAGTTGCA

S3 = ATCTGCACAGGTCAGCAGCA

S4 = ATCAGCACAGGTCAGGAGCA

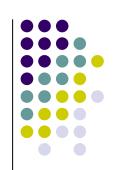
ATCCGCACAGGTCAGT AGCA

Limitation on Mining Frequent Patterns: Mine Very Small Patterns!



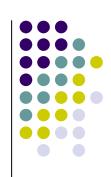
- Can we mine large (i.e., colossal) patterns? such as just size around 50 to 100? Unfortunately, not!
- Why not? the curse of "downward closure" of frequent patterns
 - The "downward closure" property
 - Any sub-pattern of a frequent pattern is frequent.
 - Example. If $(a_1, a_2, ..., a_{100})$ is frequent, then $a_1, a_2, ..., a_{100}, (a_1, a_2), (a_1, a_3), ..., (a_1, a_{100}), (a_1, a_2, a_3), ...$ are all frequent! There are about 2^{100} such frequent itemsets!
 - No matter using breadth-first search (e.g., Apriori) or depth-first search (FPgrowth), we have to examine so many patterns
- Thus the downward closure property leads to explosion!

Do We Need Mining Colossal Patterns?



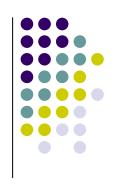
- From frequent patterns to closed patterns and maximal patterns
 - A frequent pattern is closed if and only if there exists no super-pattern that is both frequent and has the same support
 - A frequent pattern is maximal if and only if there exists no frequent super-pattern
- Closed/maximal patterns may partially alleviate the problem but not really solve it: We often need to mine scattered large patterns!
- Many real-world mining tasks needs mining colossal patterns
 - Micro-array analysis in bioinformatics (when support is low)
 - Biological sequence patterns
 - Biological/sociological/information graph pattern mining

Colossal Pattern Mining Philosophy



- No hope for completeness
 - If the mining of mid-sized patterns is explosive in size, there is no hope to find colossal patterns efficiently by insisting "complete set" mining philosophy
- Jumping out of the swamp of the mid-sized results
 - What we may develop is a philosophy that may jump out of the swamp of mid-sized results that are explosive in size and jump to reach colossal patterns
- Striving for mining almost complete colossal patterns
 - The key is to develop a mechanism that may quickly reach colossal patterns and discover most of them

Conclusions



- Most previous work focused on finding exact frequent patterns
- There exists a discrepancy between the exact model and some real world phenomenon due to
 - Noise, perturbation, etc
- Very long pattern mining can be another prohibiting problem
- Need to develop new methodologies to find approximate frequent patterns