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Representative Application: Gene Annotation

Discovering potential errors in gene annotation using machine learning 

(Andorf, Dobbs, and Honavar, BMC Bioinformatics, 2007)

• Train on human kinases, and test on mouse kinases – surprisingly poor 

accuracy!

• Nearly 95 percent of the GO annotations returned by AmiGO for a set of 

mouse protein kinases are inconsistent with the annotations of their 

human homologs and are likely, erroneous

• The mouse annotations came from Okazaki et al, Nature, 420, 563-573, 

2002

• They were propagated to MGI through the Fantom2 (Functional 

Annotation of Mouse) Database and from MGI to AmiGO

• 136 rat protein kinase annotations retrieved using AmiGO had functions 

assigned based on one of the 201 potentially incorrectly annotated mouse 

proteins

• Postscript: Erroneous mouse annotations were traced to a bug in the 

annotation script and have since been corrected by MGI
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Representative Application - Predicting Protein-RNA Binding Sites

EIAV Rev:  Predictions vs Experiments
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Background

Data revolution

� Bioinformatics

– Over 200 data repositories of interest to molecular biologists alone 

(Discala, 2000)

� Environmental Informatics

� Enterprise Informatics 

� Medical Informatics

� Social Informatics ...

Information processing revolution: Algorithms as theories

– Computation: Biology::Calculus:Physics

Connectivity revolution (Internet and the web)

Integration revolution

– Need to understand the elephant as opposed to examining the trunk, 

the tail, etc.

Needed – infrastructure to support collaborative, integrative analysis of data
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Predictive models from Data

� Supporting collaborative, integrative analysis of data across geographic, 

organizational, and disciplinary barriers requires coming to terms with:

� Large, distributed autonomous data sources

� Memory, bandwidth, and computing limitations

� Access and privacy constraints

� Differences in data semantics

� Same term, different meaning

� Different terms, same meaning

� Different domains of values for semantically equivalent attributes

� Different measurement units, different levels of abstraction

� Can we learn without centralized access to data?

� Can we learn in the presence of semantic gaps between user and data 

sources?

� How do the results compare with the centralized setting?
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Acquiring knowledge from data

Most machine learning algorithms assume centralized access

to a semantically homogeneous data

LData

Knowledge

Assumptions

h



Research supported in part by grants from the National Science Foundation (IIS 0219699, 0711356)

Iowa State University Department of Computer Science

Center for Computational Intelligence, Learning, and Discovery 

Learning Classifiers from Data

Data

Labeled Examples
Learner

Standard learning algorithms assume centralized access to data

Can we do without direct access to data?

Unlabeled Instance

Classification

Learning

Classifier

Classifier

Class
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Example: Learning decision tree classifiers
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Example: Learning decision tree classifiers

• Decision tree is constructed by recursively (and greedily) 

choosing the attribute that provides the greatest estimated 

information about the class label

• What information do we need to choose a split at each step?

• Information gain

• Estimated probability distribution resulting from each 

candidate split

• Proportion of instances of each class along each branch 

of each candidate split

• Key observation: If we have the relevant counts, we have no 

need for the data!
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Example: Learning decision tree classifiers
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Sufficient statistics for refining a partially 

constructed decision tree

Sufficient statistics for refining a partially constructed 

decision tree 
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Decision Tree Learning = Answering Count Queries 

+ Hypothesis refinement
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Sufficient statistics for learning: 

Analogy with statistical parameter estimation
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Sufficient statistics for learning a hypothesis from data 

• It helps to break down the computation of sL(D,h) into 

smaller steps

– queries to data D

– computation on the results of the queries

• Generalizes the classical sufficient statistics by interleaving 

computation and queries against data

• Basic operations

– Refinement

– Composition
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Learning from Data Reexamined

Learning = Sufficient statistics Extraction             

+ Hypothesis Construction

Query s(hi -> hi+1, D)

s(hi -> hi+1, D)

Learner

Hypothesis Construction

hi+1�C(hi , s (hi -> hi+1,D))

Statistical Query 

Generation

Data

D

Data D

[Caragea, Silvescu, and Honavar, 2004]
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Learning from Data Reexamined

Designing algorithms for learning from data reduces to

� Identifying of minimal or near minimal sufficient statistics

for different classes of learning algorithms 

� Designing procedures for obtaining the relevant sufficient 

statistics or their efficient approximations 

Leading to

� Separation of concerns between hypothesis construction 

(through successive refinement and composition 

operations) and statistical query answering
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Learning Classifiers from Distributed Data

Learning from distributed data requires learning from dataset 

fragments without gathering all of the data in a central 

location

Assuming that the data set is represented in tabular form, data 

fragmentation can be

• horizontal

• vertical 

• or more general (e.g. multi-relational)
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Learning from distributed data
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Learning from Distributed Data

• Learning classifiers from distributed data reduces to 

statistical query answering from distributed data

• A sound and complete procedure for answering the 

desired class of statistical queries from distributed data 

under

� Different types of data fragmentation 

� Different constraints on access and query capabilities

� Different bandwidth and resource constraints

[Caragea, Silvescu, and Honavar, 2004, Caragea et al., 2005]



Research supported in part by grants from the National Science Foundation (IIS 0219699, 0711356)

Iowa State University Department of Computer Science

Center for Computational Intelligence, Learning, and Discovery 

How can we evaluate algorithms for learning from 

distributed data?

Compare with their batch counterparts

• Exactness – guarantee that the learned hypothesis is the 

same as or equivalent to that obtained by the batch 

counterpart 

• Approximation – guarantee that the learned hypothesis is 

an approximation (in a quantifiable sense) of the 

hypothesis obtained in the batch setting 

• Communication, memory, and processing requirements

[Caragea, Silvescu, and Honavar., 2003, 2004]
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Some Results on Learning from Distributed Data

• Provably exact algorithms for learning decision trees, SVM, 

Naïve Bayes, Neural Network, and Bayesian network 

classifiers from distributed data

• Positive and negative results concerning efficiency 

(bandwith, memory, computation) of learning from 

distributed data

[Caragea, Silvescu, and Honavar, 2004, Honavar and Caragea, 2008]
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Semantically heterogeneous data
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Making Data Sources Self Describing

Exposing the ontology 

• Schema semantics 

• Data semantics
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Ontology Extended Data Sources

• Expose the data semantics

– Special Case of interest: 

• Values of each attribute organized as an AVH
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Ontology Extended Data Sources

• Ontology extended data source [Caragea et al, 2005]

• Inspired by ontology-extended relational algebra [Bonatti
et al., 2003]

� Querying data sources from a user’s point of view is 

facilitated by specifying mappings 

� From user schema  to data source schemas 

� From user AVH to data source AVH

� More systematic characterization of OEDS and mappings 

within a description logics  framework is in progress
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Mappings between schema
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Semantic Correspondence between Ontologies

H1(is-a)

H2(is-a)

HU(is-a)

The white nodes 

represent the values 

used to describe data
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Data sources from a user’s perspective

Rainy : H1= Rain : HU

Snow : H1 = Snow : HU

NoPrec : HU < Outlook : H1

{Sunny, Cloudy} : H1= NoPrec : HU

Conversion functions are used to map units 

(e.g. degrees F to degrees C)

[Caragea, Pathak, and Honavar; 2004]

HU(is-a)H1(is-a)
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Learning from Semantically Heterogeneous Data
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Semantic gaps lead to Partially Specified Data

• Different data sources may describe data at different levels 
of abstraction

• If the description of data is more abstract than what the 
user expects, additional statistical assumptions become 
necessary

Snow is under-specified in H1 relative to user ontology – HU

Making D1 partially specified from the user perspective

OU HU(is-a)H1(is-a)

[Zhang and Honavar, 2003; 2004, 2005]
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Learning Classifiers from Attribute Value Taxonomies 

(AVT)  and Partially Specified Data

Given a taxonomy over values of each attribute, and data 
specified in terms of values at different levels of 

abstraction, learn a concise and accurate hypothesis

[Zhang and Honavar, 2003; 2004; Zhang et al., 2006; Caragea et al., 2006]
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Learning Classifiers from (AVT)  and Partially 

Specified Data

Cuts through AVT induce a partial order over

• instance representations

• Classifiers

AVT-DTL and AVT-NBL 

• Show how to learn classifiers  from partially specified data

• Estimate sufficient statistics from partially specified data 

under specific statistical assumptions

• Use CMDL score to trade off classifier complexity against 

accuracy
[Zhang and Honavar, 2003; 2004; 2005]
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Implementation: INDUS System

[Caragea et al., 2005]
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Summary 

� Algorithms learning classifiers from distributed data with 

provable performance guarantees relative to their 

centralized or batch counterparts 

� Tools for making data sources self-describing

� Tools for specifying semantic correspondences between 

data sources

� Tools for answering  statistical queries from semantically 

heterogeneous data

� Tools for collaborative construction of ontologies and 

mappings, distributed reasoning..
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Current Directions

� Further development of the open source tools for collaborative 

construction of predictive models from data

� Resource bounded approximations of statistical queries under 

different  access constraints  and statistical assumptions

� Algorithms for learning predictive models from semantically 

disparate alternately structured data

� Further investigation of OEDS – Description logics, RDF..

� Relation to modular ontologies and knowledge importing

� Distributed reasoning, privacy-preserving reasoning…

� Applications in bioinformatics, medical informatics, materials 

informatics,  social informatics
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