Machine Learning for the Materials Scientist

Chris Fischer*, Kevin Tibbetts, Gerbrand Ceder Massachusetts Institute of Technology, Cambridge, MA

> Dane Morgan University of Wisconsin, Madison, WI

Motivation: materials design through calculation

DFT as a predictive tool

Burkett, T. et. al. Phys. Rev. Lett. 93 (2004)

Norskov, J. et. al. MRS Bulletin 31 (2006)

Marzari, N. MRS Bulletin **31** (2006) courtesy of M. Lazzeri, Paris VI Jussieu

Marzari, N. MRS Bulletin **31** (2006) courtesy of D. Scherlis, MIT

computational materials design strategies

Calculating properties of realistic nanostructures *ab initio*

Lee, Y. S. et al. PRL 95 076804 (2005)

Galli, G. University of California, Davis

computational materials design strategies

Which combinations yield the optimal material ?

			PF		AF	IC	TA	RI		20	TH			M	=N	TS.			_
	GROUP							-74	≁≁⊢ヽ	\leftarrow	444	╘╼╲┶	┙┺╼┣						_
~	1 1.0079						44			1/7			nut		spin.nr/per	iodni/en/		2 4.0026	
10/201	н			REEATIN		IASS (1)	Me	tal 🗾	Semimetal	Nonme	ətal	-						He	_
E	HYDROGEN	2 118	GRO	UPIUPAC	G	ROUPCAS		ali metal		16 Chalco	ogens elemen	"		10 100	15 1/4		17 1/114	HELIIM	
	3 6.941	4 9.0122	ATOMIC N		10.811			aline earth m	etal	17 Haloge	ens element		5 10.811	6 12.011	7 14,007	8 15,999	9 18,998	10 20,180	\geq
_2	TI	Bo	/	MBOI	-R	/ /		Lanthanide	, 	TE NODIO	yas		R	C	N	0	F	No	
		DC	,		BORON			Actinide	STAND	ARD STATE	(100 °C; 101 Fe - solid	kPa)	D	CADDON			E HODINE		\geq
_	11 22,990	12 24,305			1		/		Ga	- liquid	C - synthe	tic	13 26,982	14 28,086	15 30.974	16 32.065	17 35.453	18 39,948	
3	Na	Mg		ELE	VIENT NAME			/		/			Al	Si	Р	S	CI	Ar	
	SODIUM	MAGNESIUM	3 IIB	4 IVB	5 / VB	6 /VIB	7 VIIB	8 /	<u>- ₩₩</u>	10	11 🖪	12	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80	<hr/>
-4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	_
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
-5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)					
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	IBlh	lHs	MIt	Uum	Uuu	Uub	$\langle \rangle$	Uuq					
	FRANCIUM	RADIUM	Acumue	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM			1	<u> </u>		500	—
/		/		LANTHANI	DE											Copyright © 19	98-2003 EniG. (eni@ktf-split.hr)	
(1) Pu	e Appl. Chem., 7	3, No. 4, 667-6	83 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97	
sign	ative atomic m hificantfigures.Fo fides the value	ass is snown orelementshaw e englosed in	e no stable brackets	La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	$\left \right $
ind isot	cates the mass n ope of the element	umber of the lor	ngest-lived	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
Hov	vever three such have a charact	elements (Th, F eristic terrestria	Pa, and U) al isotopic	ACTINIDE			/					\		\					
con tab	position, and for ulated.	these an atomi	c weight is	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	M[d]	\mathbb{N}	Lr	
Edi	tor: Aditya Vardh	an (adivar@nett	tlinx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	
	/		/			/						/			\				

Outline

Machine learning in Computational Materials Design

Searching for Structure: combining historical information with Density Functional Theory

> Data Mining the High-Throughput engine

> > wrap-up

computational materials design strategies

Which combinations yield the optimal material ?

			PF		AF	IC	TA	RI		20	TH			M	=N	TS.			_
	GROUP							-74	≁≁⊢ヽ	\leftarrow	444	╘╼╲┶	┙┺╼┡						_
~	1 1.0079						44			1/7			nut		spin.nr/per	iodni/en/		2 4.0026	
10/201	н			REEATIN		IASS (1)	Me	tal 🗾	Semimetal	Nonme	ətal	-						He	_
E	HYDROGEN	2 118	GRO	UPIUPAC	G	ROUPCAS		ali metal		16 Chalco	ogens elemen	"		10 100	15 1/4		17 1/114	HELIIM	
	3 6.941	4 9.0122	ATOMIC N		10.811			aline earth m	etal	17 Haloge	ens element		5 10.811	6 12.011	7 14.007	8 15,999	9 18,998	10 20,180	\geq
_2	TI	Bo	/	MBOI	-R	/ /		Lanthanide	, 	TE NODIO	yas		R	C	N	0	F	No	
		DC	,		BORON			Actinide	STAND	ARD STATE	(100 °C; 101 Fe - solid	kPa)	D	CADDON			E HODINE		\geq
_	11 22,990	12 24,305			1		/		Ga	- liquid	C - synthe	tic	13 26,982	14 28,086	15 30.974	16 32.065	17 35.453	18 39,948	
3	Na	Mg		ELE	VIENT NAME			/		/			Al	Si	Р	S	CI	Ar	
	SODIUM	MAGNESIUM	3 IIB	4 IVB	5 / VB	6 /VIB	7 VIIB	8 /	<u>- ₩₩</u>	10	11 🖪	12	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80	<hr/>
-4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	_
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
-5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)					
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	IBlh	lHs	MIt	Uum	Uuu	Uub	$\langle \rangle$	Uuq					
	FRANCIUM	RADIUM	Acumue	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM			1	<u> </u>		500	—
/		/		LANTHANI	DE											Copyright © 19	98-2003 EniG. (eni@ktf-split.hr)	
(1) Pu	e Appl. Chem., 7	3, No. 4, 667-6	83 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97	
sign	ative atomic m hificantfigures.Fo fides the value	ass is snown orelementshaw e englosed in	e no stable brackets	La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	$\left \right $
ind isot	cates the mass n ope of the element	umber of the lor	ngest-lived	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
Hov	vever three such have a charact	elements (Th, F eristic terrestria	Pa, and U) al isotopic	ACTINIDE			/					\		\					
con tab	position, and for ulated.	these an atomi	c weight is	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	M[d]	\mathbb{N}	Lr	
Edi	tor: Aditya Vardh	an (adivar@nett	tlinx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	
	/		/			/						/			\				

Motivation: searching for new materials

Motivation: materials by design

The need for machine learning

The need for machine learning

Computational Materials Design poised for impact

Open source electronic structure software

~\$200-250k capital investment

Computing budget ~50k compounds/year

Computational Materials Design poised for impact

ICSD: World's Largest database of inorganic crystal structures

2	ICSE) for WWW - Mozilla Firefo	¢	_ 0					
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tor	y <u>B</u> ookmarks <u>T</u> ools j	<u>H</u> elp							
	🏠 🔀 http://icsdweb	o.fiz-karlsruhe.de/index.pł	np 🔹 🕨 🚺	Google €					
PGetting Started 🔂 Latest Headlines									
Authors/Code	Years	lournal	Title/Comment	Help					
				Search Reset					
Elements	Element Count	Chem/Mineral Name	ANX/Pearson/S.Type	Cell Size/Mass					
l System	Laue Class	l Centering	Space Group	J Wyckoff Sequence					
any 💌	any 💌	any 💌							
Remarks	Min. Distance	Distance Select	Distance Range	Co-ordin.					
1	Welcome to the	Inorganic Crystal Struc	ture Database.	1					
	Click the blue	heading links for help a	nd examples.						
	7611								
		1	J L						
		41							
		11.11							
	Demo database (The Full da Copyright 2003	atabase will be used if available . 3-2007 Fachinformationszentrum	after the first query is entered) (FIZ) Karlsruhe						
	PHP/MySQL Interface V07-0	09-16 copyright 2003-2007 by Pe	ter Hewat email: hewat@ill.fr						
First En	trv 1	013							
$\mathbf{HSULINT} \mathbf{Y} \cdot \mathbf{T} \mathbf{Y} \mathbf{T} \mathbf{Y}$									
t of optrior, 100.242									
F UI EIILIIES. 100,245									

usable compounds: 29,962

Computing budget ~50k compounds/year

The structure search problem

Coordinate Search: Optimize energy (or free energy) directly in the space of atomic coordinates Heuristic Rules or Chemical Intuition

Coordinate Search: Optimize energy (or free energy) directly in the space of atomic coordinates

GroundState =
$$\arg \min_{\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N} E(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$$

of dimensions = 3N – 3 + dim(a,b,c, α,β,γ)

Doye, J. PRL, 88, 238701, (2002)

Coordinate Search: Optimize energy (or free energy) directly in the space of atomic coordinates

GroundState = arg min_{$$\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N$$} $E(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$

of dimensions = $3N - 3 + dim(a,b,c,\alpha,\beta,\gamma)$

Doye, J. PRL, 88, 238701, (2002)

Proposed Solutions

Calculate energy of a finite set of structure prototypes

Coordinate Search: Optimize energy (or free energy) directly in the space of atomic coordinates

GroundState = arg min_{$$\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N$$} $E(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$

of dimensions = $3N - 3 + dim(a,b,c,\alpha,\beta,\gamma)$

Proposed Solutions Calculate energy of a finite set of structure prototypes (a) Use a stochastic optimization procedure (hop from basin to basin) e.g., Simulated Annealing **Genetic Algorithms**

Doye, J. PRL, 88, 238701, (2002)

Coordinate Search: Optimize energy (or free energy) directly in the space of atomic coordinates

(a)

 $GroundState \equiv arg min_{\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N} E(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$

of dimensions = $3N - 3 + dim(a,b,c,\alpha,\beta,\gamma)$

Proposed Solutions

Calculate energy of a finite set

Knowledge is not *transferred* across chemistries

Doye, J. PRL, 88, 238701, (2002)

Use a stochastic optimization procedure (hop from basin to basin)

e.g., Simulated Annealing Genetic Algorithms

Heuristic Rules

Use previous experiments to *suggest* what to calculate

How?

Identify a set of simple parameters based on alloy constituents

1932: Pauling electronegativity	ΔX
1935: Laves & Witte	$\Delta r_{\!{}_{A,B}}$
1926,1936-7: Hume-Rothery,	$n^{(e)}_{at}$
Mott & Jones 1976: Miedema	$\Delta n^{(e)}_{_{_{WS}}}$

Figure 5. The Villars maps for AB compounds corresponding to the average electron-per-atom ratio of $\overline{N}=4$ and 6.5 respectively (From Villars, 1983. Reproduced with permission). (a) $\overline{N}=4$; (b) $\overline{N}=6.5$

NGDM, October 10, 2007

A (indexed by increasing Mendelevey Number)

Heuristic Rules

NGDM, October 10, 2007

A (indexed by increasing Mendelevey Numb

description of knowledge base

Pauling File binaries edition (Villars, P. et. al. J. of Alloys and Compounds, (2004))

1335 binary alloys

3975 non-unique compounds

4263 compounds total

alloys not containing elements: He, B, C, N, O, F, Ne, Si, P, S, Cl, Ar, As, Se, Br, Kr, Te, I, Xe, At, Rn

Machine learning framework: concepts

$$\boldsymbol{X} = \left(\boldsymbol{X}_A, \boldsymbol{X}_0, \dots, \boldsymbol{X}_{\frac{1}{2}}, \dots, \boldsymbol{X}_B \right)$$

Low temperature state of alloy

$$Data \equiv \left[\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N} \right]$$

database of N binary alloys

Machine learning framework: concepts

$$\boldsymbol{X} = \left(\boldsymbol{X}_A, \boldsymbol{X}_0, \dots, \boldsymbol{X}_{\frac{1}{2}}, \dots, \boldsymbol{X}_B \right)$$

Low temperature state of alloy

$$Data \equiv \left[\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N} \right]$$

database of N binary alloys

Probability of low temperature state (fitted to data)

Probability of low temperature state conditioned on evidence 'e'

how to use the machine learning framework

Are probabilities consistent with physical intuition ?

Do probabilities encode the physics of structure stability ?

quantifying correlation in probabilistic framework

how probabilities represent physics of mixing

Data from Pauling File, Binaries Edition

how probabilities represent physics of mixing

how probabilities represent physics of mixing: more interesting correlations

Correlation factors are probabilistic analogue of heuristic rules

No *explicit* reference to physics. Physics is *embedded* in experimental data

Information theory for structure stability

Suppose I know Fe₃C forms @ c = $\frac{3}{4}$, how does this change prediction @ c = $\frac{1}{2}$?

How much information is carried by knowledge of structure ?

$$\frac{\text{Mutual Information}}{I_{i,j} = \sum_{x_i, x_j} p(x_i, x_j) \log \left(\frac{p(x_i, x_j)}{p(x_i) p(x_j)} \right)}$$
$$I_{i,j} = \left\langle \log \left[g_{ij}(x_i, x_j) \right] \right\rangle$$

Information theory for structure stability

Prediction and validation in Li-Pt

Predicting structures in Li-Pt

Predicting structures in Li-Pt

cross validation to evaluate performance

Cross validation results

Nature Materials, 6, 641-646, 2006

Some open questions

ICSD: World's Largest database of inorganic crystal structures

e	ICSE) for WWW - Mozilla Firefo	×						
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory	/ <u>B</u> ookmarks <u>T</u> ools <u>I</u>	Help		0					
	🏦 🔀 http://icsdweb	.fiz-karlsruhe.de/index.pl	np 🔹 🕨 [G• Google					
PGetting Started 🔂 Latest Headlines									
Authors/Code	Years	Journal	Title/Comment	Help					
Elements	Element Count	Chem/Mineral Name	ANX/Pearson/S.Type	Cell Size/Mass					
, System any _	Laue Class	Centering	Space Group	Wyckoff Sequence					
Remarks	Min. Distance	Distance Select	Distance Range	Co-ordin.					
	Welcome to the	Inorganic Crystal Struc	ture Database.						
	Click the blue	heading links for help a	and examples.						

What is the information content in a chemical database?

How many 'independent' crystal structures exist in nature ?

First Entry: 1913 # of entries: 100,243 # usable compounds: 29,962 # structure prototypes: 2,485

Structure prediction: wrap-up

Directions for future work/collaboration

Directions for future work/collaboration

Set of features

- Charge Density
- Total energy
- •Bulk moduli
- Coordination
- Bond strength
- Bond character
- Magnetic moments
- Polarization

• . . .

Directions for future collaboration

The End

Data from High Throughput alloy study Online structure predictor

http://datamine.mit.edu

ITR grant (**DMR-031253**)

INSTITUTE FOR SOLDIER NANOTECHNOLOGIES Enhancing Soldier Survivabilit

DELETE ME !!!

- introduce CMS, what is it being applied to ?
- Data mining and materials design make some outline slide ?
- introduce structure prediction problem, present our solution
- discuss higher order property prediction.
 data management, dissemination

DATASET NOTES

1335 alloys

3975 non-unique compounds

4263 compounds total

alloys not containing elements: He, B, C, N, O, F, Ne, Si, P, S, Cl, Ar, As, Se, Br, Kr, Te, I, Xe, At, Rn