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@ Outline

- What is Computational Scientific Discovery
- Introduction

- Examples (ecological models, reaction pathways)

- What are Inductive Databases and Queries
- Introduction

- Examples (QSAR, integrative genomics)

- How the two can be connected, i.e., how Inductive
Databases and Queries can be used for
Computational Scientific Discovery




@ Computational Scientific Discovery

- What is Scientific Discovery:
The process by which a scientist creates or finds
some hitherto unknown knowledge

such as class of objects, an empirical law, or an
explanatory theory

- Computational Scientific Discovery attempts to
provide computational support for this process

- Early research reconstructed episodes

from the history of science

- Recent efforts in this area have focussed on
individual scientific activities

(such as formulating quantitative laws) and have led
to several new discoveries




Elements of Scientific Behavior

Scientific knowledge structures
- Observations
- Taxonomies:

- Define or describe concepts for a domain, along with
specialization relations among them

- Specify the concepts and terms used to state laws and
theories

- Laws:Summarize relations among observed variables,
objects or events

- Theories:

- Statements about the structures or processes that arise in
the environment

- Stated using terms from the domain's taxonomy
- Interconnect laws into a unified theoretical account
- Models, Predictions, Explanations (Derived from above)




@ Elements of Scientific Behavior

- Scientific processes/activities are concerned with
generating and manipulating scientific data and
knowledge structures

. Scientific activities
- Collecting data/observations
- Formation and revision of:

- Taxonomies. Organize observations into classes and
subclasses; define those classes and subclasses

- Laws. Given observed data, find empirical laws
- Theories.: Given one or more laws, generate a theory

- Deriving models, predictions, and explanations




Laws of Dynamic Systems’ Behavior

Input: Observed behavior of dynamics systems
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@ Explanatory Models

- Looking deeper into the model

d

Eh{l?"ﬁ = 2.5 hare — 0.3 - hare - fox
d
Eﬁﬂ;{r = 0.1-0.3- hare - for — 1.2 - for

- Three processes
of hare population
- Exponential loss of fox population
- Predator-prey interaction between the two species

- Terms in equations correspond to processes




Domain Knowledge: Generic Processes

Generic process for predator-prey interaction
process predator_prey_interaction
variables Prey{species}, Pred{species}
parameters [0, inf], e[0, inf]
equations
di Prey = —1 -1 - Prey - Pred
- Pred =e -7 - Prey - Pred

Instantiation to specific processes

process predator_prey_interaction
di hare = —0.3 - hare - fox
= for =0.1-0.3 - hare - fox

In this case: Pred=fox, Prey=hare, r=0.3, e=0.1




Process-based Models of Dyn Sys

- Input: Observed behavior + Set of generic processes
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- Output: Set of instantiated processes + ODEs
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Integrating Data and Knowledge

- Using different types of domain knowledge
Background knowledge on basic processes
Using existing models and revising them
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- Completing partially specified models
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@ Example Applications: Ecology

Modelling aquatic ecosystems
- Venice laaonon

; 5 biomass
b1 = 4.79-1077 - bi T =
iomass { iomass - ( Teid ) o
40.406 - biomass - (1 — ,_—U.Elﬁ-temp e o ,_ﬂ’LH:jIDD '
- ( E ) £ ‘ ) NH3 + 1

—0.0343 - biomass

- Lake Glumsoe, Denmark

phosp
0.0264 + phosp

phjto:={L553-temp- —4.35 - phyto — 8.67 - phyto - zoo

- Many other: Lake Bled (Slovenia), Lake Kasumigaura
(Japan), Lake Greifensee (Switzerland), Lake Kinnereth
(Israel), Lake Ohrid (Macedonia)




Example Apps: Metabolic Networks

model glycolysis_kinetics;
process fluxcombination (G3F;
equations d[G3P, ¢, 1] = 2.0828 « G3P, s + 0.0002 « G3P_ ¢,
process filux_combination_3PG;
equations d 3G, £, 1] = 1.2251 + 3P Gy free + 43802 + 3G frux;
process flux_combination F16BP;
equations d F 168 P, ¢,1] = 32353 « F168BFP, ¢, + 1.2803 « F'16BFP_ ...
process filux_combination FEP;
equations d/F'6F, t,1] = 9.8457 « F6F, .. + 7.9592 « F6FP_ p..:
process filuxcombination DH AP,
equations d DH AP #,1] = 1.5514 « DH AP, ¢ + 02402 « DHAP 5.,
process fluxcombination(GEP;
equations d/GE6F, +,1] = 0.1119 +« G6FP4 prwx + 01557 = GBFP— frux;
process reversible (G3P_F16EBP;
equations 3P4 fi.. = G3PT0.0824 « F16BP"0.1451;
G3P_flux = GAP 0.T173 +« F16BP™1;
F16BP, f1,.. = G3P 01678 « F16B P 0.460T;
F16BP_p,.., = G3P "0+« F16BFP™0.0010;

process reversible 3P G G3P;
equations 3P G, f.. = 3PGT 02755 « 3P 0.2059;
BPG_ fiue = 3PGT0.3810 « GA3PT0.6193;
AP frue = 3PGT0.2166 « G3PT0.2742;
G3P_fiu = 3PG"0.5907 + G3IP™0.3825;

DHAP 2> G6P

T 3pG <> G3P <—> F16BP

I

F6P




@ CSD Focusses

.+ On standard scientific formalisms (e.q.,
equations, pathways) introduced and routinely
used by scientists

- The results should be communicable with domain
scientists and publishable in relevant scientific
literature

- Integration of domain knowledge is of primary
importance (e.g., concepts from the relevant
scientific domain, existing laws/models)

- Interaction with domain scientist and incremental
approach also crucial

- Many of these concerns ill met by data mining,
some addressed by inductive databases/queries




@ Inductive Databases and Queries

- A database perspective on knowledge discovery:
Knowledge discovery processes are query processes

- "There is no discovery in KDD, it’s all a matter of the
expressive power of the query language”

- Inductive database = Database + Patterns/Models

- Sets of patterns can be materialized or views
- Data mining operations = Inductive queries

- 1Q: Inductive Queries for Mining Patterns and Models
(EU funded project, Future and Emerging Technol.)




@ Inductive Queries

. Inductive query = Set of constraints that a
pattern/model has to satisfy

- Language constraints (only on the pattern/model)

- Evaluation constraints (concern the validity of the
pattern/model with respect to a database)

- Given IDB = D + B + P, we have diff types of queries
- Data retrieval (D + B —> D): “classical” database query

- Cross over (D + B + P —> D): uses patterns and data
to obtain new data

- Processing patterns (P + B -> P): patterns queried
without access to the data (post-processing)

- Data mining (D + B + P -> P): new patterns generated
on the basis of the data and the existing patterns




@ Inductive Databases for QSAR

QSAR = Quantitative Structure Activity Relationships

- Basic data structure: Molecule
- Represented as labeled graph, or
- relationally through atom/bond facts

. Patterns: Molecular fragments/substructures

- Models: Equations (linear) or other predictive models
(e.g., regression trees) based on bulk features and
molecular fragments as indicator variables

- Domain knowledge: Functional groups




@ Inductive Databases for QSAR

Inductive queries

- Find frequent patterns (molecular fragments)

- Check for occurrence of fragments in molecules to
obtain features

- Build predictive models from bulk features and
molecular fragments/functional groups as indicator
variables

Underlying application: Drug design




@ Example Inductive Queries for QSAR

Let us be given datasets D1 and D2 of molecules

Q1: In the context of dataset D1, find all molecular fragments that
- appear in the compound AZT (which is a drug for AIDS)

- occur frequently in the active compounds (= 15% of them)
and

- occur infrequently in the inactive ones (=< 5% of them)

Q2: Use the fragments resulting from Q1
as features to describe the molecules in D2

Q3: Use the data resulting from Q2
to find a decision tree for predicting activity that
- is of size at most 7 (leaves)
- is as accurate as possible




@ IDBs for Integrative Genomics

- Basic data structure: A microarray
- In the dataset, rows are patients (with diagnoses),
- columns are probes/genes,
- entries are gene expression levels

. Patterns: Rankings of genes (wrt differental
expression in the light of diagnosis)

- Models: Relational regression trees/rules
predicting the rank of a gene in terms of DK

- Domain knowledge: gene ontology, gene
interactions, pathways




@ IDBs for Integrative Genomics

- Take microarray data from three neuroblastoma
studies (M1, M2, M3), where for each patient we
have the status (relapse or ‘no event’)

- On each of these datasets, rank the genes wrt
differential expression in relapse vs. ‘no event’
producing rankings R1, R2, R3

- From R1, R2, and R3, produce an aggregate
ranking R

- Build a model for predicting the rank R of a gene
from the domain knowledge, i.e., characterize
highly ranked genes in terms of GO/int./pathways




@ IDBs for Integrative Genomics

- Take microarray data from neuroblastoma patients
(N) and Wilm’s tumor (W), as well as controls (C)

- Rank the genes wrt differential expression in N vs. C
and W vs. C, producing rankings R1, and R2

- Find the pathways with the highest number of highly
ranked genes (according to R1 and R2 separately)

- Find the pathways common for R1 and R2

- Underlying application: identify genes/pathways to
be targeted with new drugs




@ IDBs and 1Qs for CSD

- IDBs and 1Qs address some of the central
concerns of Computational Scientific Discovery

- The explicit storage of patterns/models and
background knowledge allows for the (re)use of
domain knowledge together with data

- The process of (inductive) querying is interactive
and allows for significant user involvement

- The use of constraint-based data mining
approaches allows for additional influence of the
user on the discovery process




@ Outlook

. Scientific task: Construct a model of a new lake
ecosystem, for which some measurements are
available

- First, find a model from the existing literature
that has been constructed for a similar ecosystem
[query on patterns/models]

- Apply this model to the dataset at hand [cross-
over query]

- If the fit of the model to the data is bad, revise
the model by using the data or construct a new
model by using data and domain knowledge [IQ]

.- For this, both scientific data and models need to
be stored in (distributed) scientific IDBs!




Computational Dlscovery of Sclentific Knowledge

Jdvances in technology have emabled the collection of date from scientific
obeervations, simnlatians, and experiments at an ever-increasing pace. For the
scieniist and engineer to benefit from these enhanced data collscting capahilities, it
is becoming clear that semi-sntommated date snatyvis techniqoes most be applied to
find the nseml information in the data. Computatinnal scientific discmeery methnds
can be need 1o this end: focm an COm; methods to antemate
scieriflc activities; |n.|:'htrlqﬂ.ud.l.n5 m%hmu In comtrast to

mining scienkific dat, which fecoses on boilding highly predictive medsls,

compatatinnal scientific discovery pobs a strong emphasis on dis covering Inowledge
represented in formalisms nesd by scientists and engineery, soch as oomeric

equatinns and reaction patheeys.

This state-nf-the-art survey provides an intredotion ta compotetiomal sppeosches
to the discovery of scientific knowledge and gives an overview of recent sdvances in
this ares, including techniques and applications in emvirenmental and Life sciences.
The ¥ articles presented are partly inspired by the cooiribotions of the Inkermatiomal
Symposinm on Computsticmal Discovery of Commonicable Enowledge, held in
Smanford, CA, TEA in March acca. More represenfative coverage of recent research in
cemputatinnal scientific discovery is achieved by a significant oomber of addidonal
iorvited comtritmtions.

In pamallel to the printed baok, ench new valume is published dectronically
in LHCE Cmline,

Detniled tnformation en LMCS can be found st
wemapringer.comf knc
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Lecture Notes In Computer Scende

The LM CS series reports stabe-of-the-art resnlts in compoter science
research, development; and education, ot a high level and in both priced

and eleciromic form. Enjoying tight cooperation with the R&T! commmmity,
with oumerens individoals; as well & with prestigions coganizations and
sacieties, LM CS has grown into the most comprebensive comprter science
research forom mvmilable.

The soope of LNCS, indnding its snbseries LMAT and LMBI, spans the

whale range of computer science and information technology inchding

imterdisciplinary tapics i a variety of applioition fields. The type of

material poblished traditionally inclndes

- procesdings (published in time fior the respective confenence )

- post-procesdings (consisting of thorooghly revised final foll papers)

— research mooographs (which may be ased on oot sianding PhID work,
research projects, technical reparts, eic )

Mare recenithy, several codor- cover sublines have been added featoring.
b=pand a collection of papers, varions added -walue compomneris; these
sublines inclode
- totorials (textbook-like monographs or collections of lectores given at
advanced coursss)
- stabef.-the-art surveys (offering complete and mediated coverage
of a topic)
- hot topics (introducing emergent topics ta the broader community)
In parallel o the printed book, sach new wolome is poblished electronically
in [NCS Online.
Dietailed information on LYICS can be fonnd at
wwwspringer.om/Incs
Proposals for publication should be senit 1o
LNCE Editorial, Tiergartersir. 1, $g111 Heidelberg Germany
E-mail Incsi@springer. com
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