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FCGR

•AA •AC •CA •CC

•AG •AT •CG •CT

•GA •GC •TA •TC

•GG •GT •TG •TT

•A •C

•G •T

•a) Nucleotides •b) Dinucleotides •c) Trinucletides

•AAA •AAC •ACA •ACC

•AAG •AAT •ACG •ACT

•AGA •AGC •ATA •ATC

•AGG •AGT •ATG •ATT

•GAA •GAC •GCA •GCC

•GAG •GAT •GCG •GCT

•GGA •GGC •GTA •GTC

•GGG •GGT •GTG •GTT

•CAA •CAC •CCA •CCC

•CAG •CAT •CCG •CCT

•CGA •CGC •CTA •CTC

•CGG •CGT •CTG •CTT

•TAA •TAC •TCA •TCC

•TAG •TAT •TCG •TCT

•TGA •TGC •TTA •TTC

•TGG •TGT •TTG •TTT

Courtesy of Eamonn Keogh, UCR
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FCGR Example

Homo sapiens – all mature miRNA

Patterns of length 3

UUC

GUG
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What is TCGR?

� Temporal Chaos Game Representation 

(TCGR)

� A visual and numerical representation of 

data

�Can be applied to DNA sequence data 

as well as other data types

� Shows general structure of sequences

� Structure is represented as distribution of 

subsequence over sequence length.
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Temporal CGR (TCGR)

� Temporal version of Frequency CGR

� In our context temporal means the starting location of a window

� 2D Array

� Each Row represents counts for a particular window in sequence

• First row – first window

• Last row – last window 

• We start successive windows at the next character location

� Each Column represents the counts for the associated pattern in 

that window

• Initially we have assumed order of patterns is alphabetic

� Size of TCGR depends primarily on sequence length and 

subsequence size

� As sequence sizes vary, we only examine complete windows 

� We only count patterns completely contained in each window.
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Frequency

� Instead of actual frequencies, a 

normalization (based on largest frequency 

in sequence) is used.

� 0.0 means a subsequence did not occur in 

a window

� 1.0 for a subsequence means it is the most 

frequently occurring in the data set.

� Color schemes for visualization:

BlackRed (“hot spot”)1.0

GrayBlue0.5

WhiteWhite (“cold spot”)0.0

GrayscaleColorFrequency
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TCGR Representation

Window

Hot Spots

Possible Cold Spots

Subsequence
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TCGR Algorithm Overview

1. Counting
While windows are left:

• Count all subsequences present 
for all strings in current window

• Move window down by specified 
overlap and repeat

2. Frequency conversion

• Divide all subsequence counts by 
maximum to scale to [0,1].
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TCGR Algorithm Overview

Counting Process
Counts Array

Frequency Array TCGR output
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TCGR Parameters

� Subsequence size (SS)

�Maximum Count Value

�Window Length (WL)

�Window Overlap (WO)
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Effects of Subsequence Size

�Number of columns is 4n

� For a constant window length and 

overlap and increasing subsequence 

size:

� The number of columns will 

increase exponentially

� The TCGR will become less dense 

(more white space)

� As density decreases, white space 

holds less potential meaning.
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Effects of Subsequence Size

Synthetic data set

SS=1 SS=2 SS=3
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Effects of Maximum Count Value

� Affects the scaling of the data at the 
frequency level.

� When the maximum count value is low, 
small differences in frequency are more 
visible.

� If comparing TCGRs for two different 
sequences, should scale both to the same 
maximum count value to avoid false hot 
spots.

� If comparing TCGRs where each represents 
a set of many sequences, using the default 
scaling may be better to compare relative 
structure.
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Effects of Maximum Count Value

(data from slide 15, multiple sequences)

Max=23 (default) Max=30 Max=50
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Effects of Window Length

� For a constant SS and maximal WO:

� The output becomes denser

� Cold spots may become more 

meaningful

� Total number of rows will decrease
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Effects of Window Length

(data from slide 10 , multiple sequences)
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Effects of Window Overlap

�Gives best results when maximized

�Risks associated with decreasing WO:

� Boundary anomaly can occur if last 

window is only partially filled

� Maximum count values may be 

missed

� Scaling may be off due to missed 

maximum counts
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Effects of Window Overlap

GGGTGAGGTAGTAGGTTGTATAGTTTGGGGCTCTGCCCTGCTATGGGATAACTATACAATCTACTGTCTTTCCT_____________

TCAGAGTGAGGTAGTAGATTGTATAGTTGTGGGGTAGTGATTTTACCCTGTTCAGGAGATAACTATACAATCTATTGCCTTCCCTGA

CTGGCTGAGGTAGTAGTTTGTGCTGTTGGTCGGGTTGTGACATTGCCCGCTGTGGAGATAACTGCGCAAGCTACTGCCTTGCTA___

AGGTTGAGGTAGTAGGTTGTATAGTTTAGAATTACATCAAGGGAGATAACTGTACAGCCTCCTAGCTTTCCT_______________

CCCGGGCTGAGGTAGGAGGTTGTATAGTTGAGGAGGACACCCAAGGAGATCACTATACGGCCTCCTAGCTTTCCCCAGG________

(Xu et al.)

SS=1, WL=10

WO = 9, 8, 7, and 6 respectively
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Effects of Sequence Alignment

� If used before performing TCGR:

� Can result in more accurate data 

representation

� Hot spots will not be missed due to 

being misaligned

� Rows may increase, particularly if 

gaps are allowed
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Effects of Sequence Alignment

A synthetic data set:

CAGAATTTTCGACATGGAGCAACGATATATATTGACCCTATGCCGGATTCTGCTCTCACTAACTTTGCGCACGGGTG

CAGAATTTTCGACATTCTAAGAACCCTTTAAGTACACCGAATCTATCAAACGATACATTTGCGCACGGGTGGTAG

CAGAATTTTCGACAGAAGAAAATAAAACATCAGAGTCATCCGGACTAAGATAGCCGCGTTTGCGCACGGGTGTTCA

CAGAATTTTCGACCATGGAACGCGTGGAGCGTCATTACAGCGAGCCGTAGAGTTTGCGCACGGGTGATATATG

CAGAATTTTCGACGTCCTGGCAAGTAACTTGTTCACAGCACTTTAAATGATTTGCGCACGGGTGTCCAATGAGA

Conserved regions are marked in red.

Sample alignment of the data:

CAGAATTTTCGACATTCTAAGAAC_C____C_TTTAAGTAC_ACCGAA_TCTATCA__AACGATACATTTGC_GCACGGGTGG__TAG__________

CAGAATTTTCGACGTCCTGGCAAG_TAA__C_TTG__TT_C_ACAGCA_CTT_T_A__AATGAT_T_TGCGC_ACGGGTGTCCAATGAGA________

CAGAATTTTCGACAG___AAGAAAATAAAACATCAGAGTC__ATCCGGACT_AAGAT_AGCCGCGTTTGCGC_ACGGGTGTTCA______________

CAGAATTTTCGACATGGAGCAACGATATAT_ATTGACCCTATGCCGGATTCTGCTCTCACTAACTTTGCGC__ACGGGTG__________________

_________________________CAGAATTTTCGACCATGGAACGCGTGGAGCGTCATTACAGCGAGCCGTAGAGTTTGCGCACGGGTGATATATG
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Effects of Sequence Alignment

Data unaligned Data aligned

2nd set of hot spots
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TCGR Applications

� Visualize Structure

� Identify motifs or conserved regions

� Predict locations of DNA/RNA features

� miRNA

� miRNA binding site

�May be generalized to non DNA/RNA 

strings (temporal spatial data)

�Has been linked to a modeling prediction 

technique - EMM
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TCGR – Mature miRNA
(Window=5; Pattern=2)

All MatureMus MusculusHomo SapiensC Elegans

Visualize Structure

All higher level animals’ miRNA have a noticeable CG cold streak
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Predict miRNA site

Data from:  C. Xue, F. Li, T. He, G. Liu, Y. Li, nad X. Zhang, “Classification of 
Real and Pseudo MicroRNA Precursors using Local Structure-Sequence Features 
and Support Vector Machine,” BMC Bioinformatics, vol 6, no 310.
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TCGR - Not Just a Pretty Picture

1. Represent potential miRNA sequence with 

TCGR sequence of count vectors

2. Create dynamic Markov chain, EMM, using count 

vectors for known miRNA (miRNA stem loops, 

miRNA targets)

3. Predict unknown sequence to be miRNA (miRNA

stem loop, miRNA target) based on normalized 

product of transition probabilities along clustering 

path in EMM
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EMM Creation

1: <18,10,3,3,1,0,0>1: <18,10,3,3,1,0,0>

2: <17,10,2,3,1,0,0>2: <17,10,2,3,1,0,0>

3: <16,9,2,3,1,0,0>3: <16,9,2,3,1,0,0>

4: <14,8,2,3,1,0,0>4: <14,8,2,3,1,0,0>

5: <14,8,2,3,0,0,0>5: <14,8,2,3,0,0,0>

6: <18,10,3,3,1,1,0.>6: <18,10,3,3,1,1,0.>

1/3

N1

N2

2/3

N3

1/11/3

N1

N2

2/3

1/1

N3

1/1

1/2

1/3

N1

N2

2/3
1/2

1/2

N3

1/1

2/3

1/3

N1

N2

N1

2/21/1

N1

1 
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Cisco – Internal VoIP Traffic Data

Time →

V
a
lu
e
s
 →

VoIP traffic data was provided by Cisco Systems and represents logged VoIP traffic in 

their Richardson, Texas facility from Mon Sep 22 12:17:32 2003 to Mon Nov 17 

11:29:11 2003. 

Time
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Seismic Data Example

Time

Sensor location
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Conclusions

� TCGR is a useful new tool for data where 

composition varies with respect to distance 

or time.

� TCGR can be applied to data mining for 

event detection.

� Potential applications of TCGR to biological 

data include motif detection.

� Careful use of parameters makes TCGR 

more useful.
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