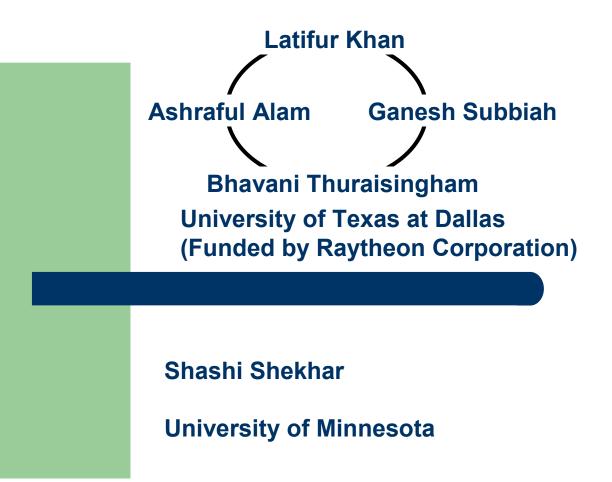
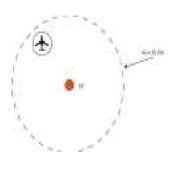
Semantic Geospatial Data Integration and Mining for National Security



Geospatial Data Integration: Motivating Scenario

Query: "Find movie theaters within 30 miles of 75080"

- within, near, overlap Geospatial Operators
- Theaters, Restaurants Businesses (Non-Geospatial data)
- Miles Distance Unit
- 75080, Richardson Geo References

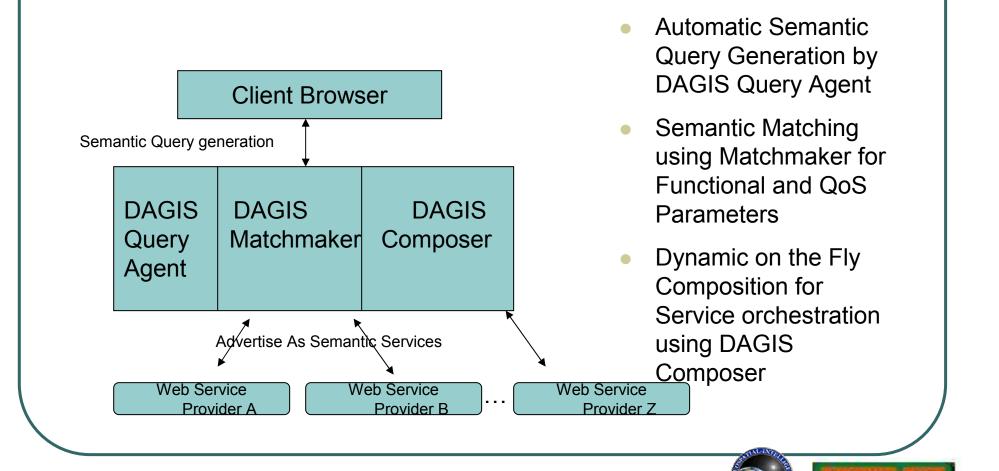


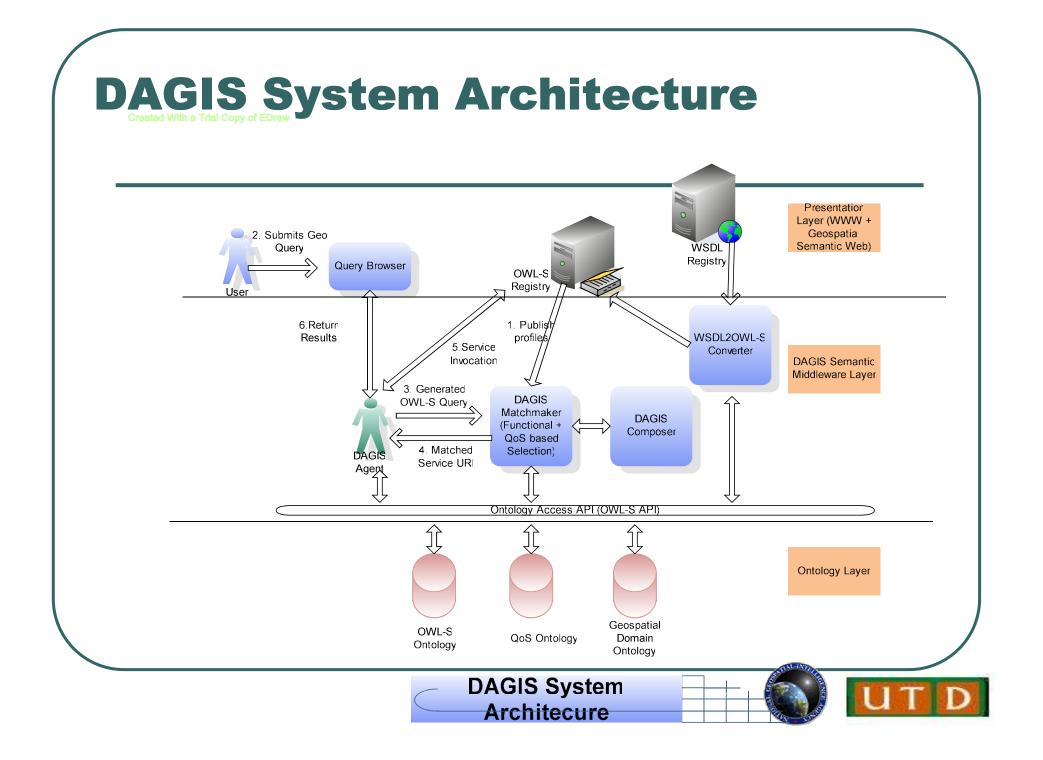
Cinemark Movies 10 Radisson Hotel Dallas North-Richardson

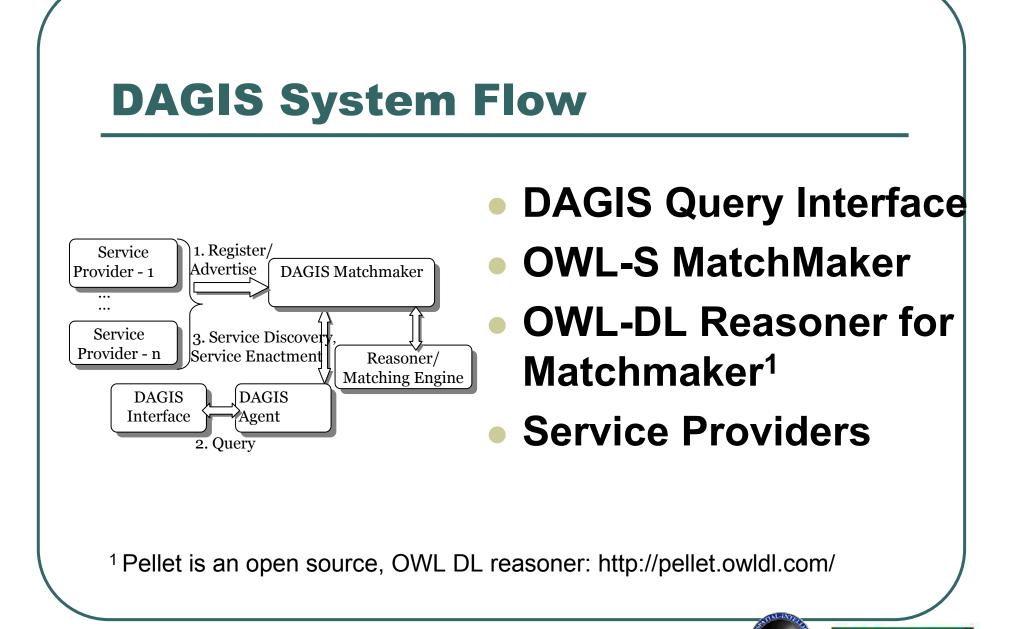
Key Contributions

- Query can be handled by
 - Traditional search engine Google, Yahoo –Not at Semantic level
 - Almost no search engine facilitates finding relevant web services (except Woogle – template matching for web services & no composition) and handle complex queries
- DAGIS Discover geospatial semantic web services using OWL-S Service ontology coupled with geospatial domain specific ontology for automatic discovery, dynamic composition and invocation
 - Facilitates semantic matching of functional and nonfunctional services from various heterogeneous independent data sources.

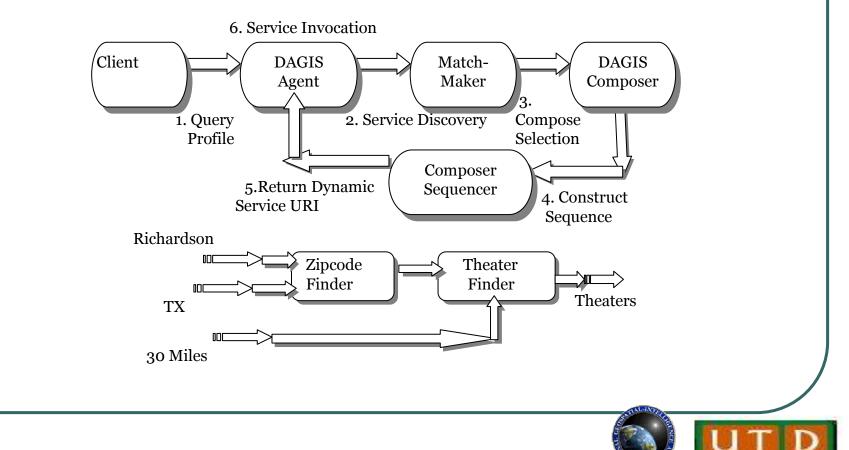
Key Contributions







Find Movie Theaters within 30 Miles from Richardson, TX



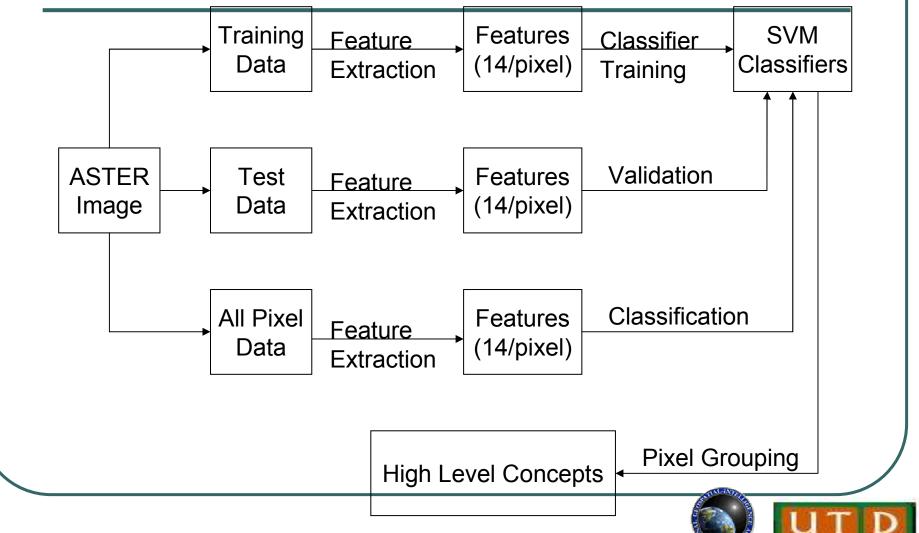
Geospatial Data Mining: Case Study: Dataset

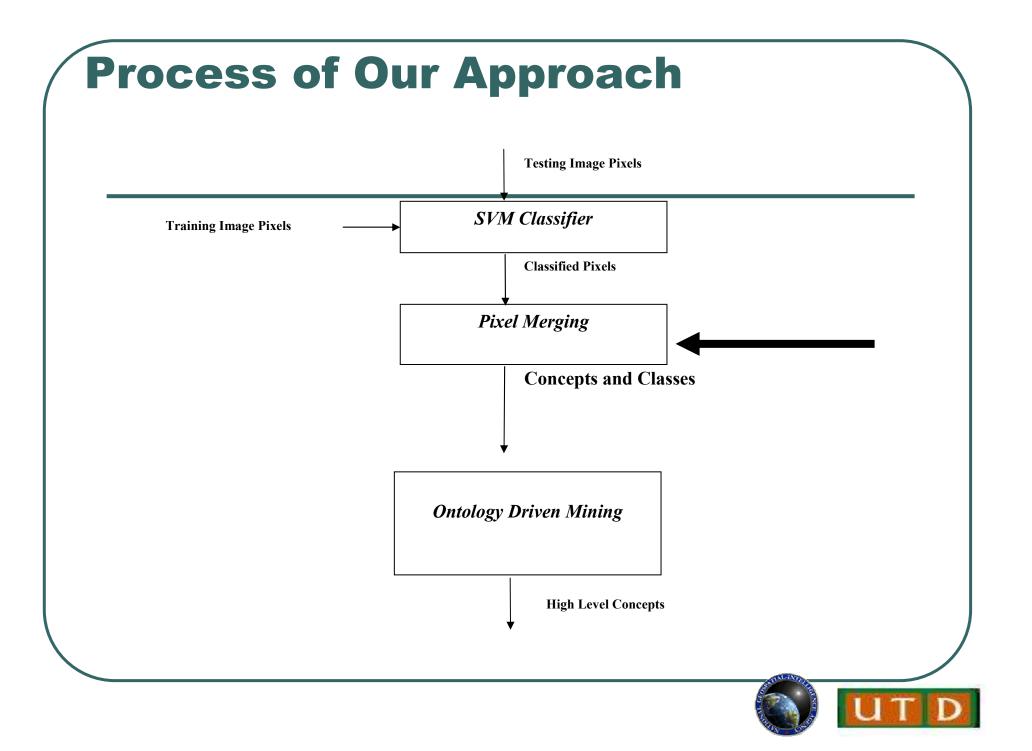
- ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
 - To obtain detailed maps of land surface temperature, reflectivity and elevation.
- ASTER obtains high-resolution (15 to 90 square meters per pixel) images of the Earth in 14 different wavelengths of the electromagnetic spectrum, ranging from visible to thermal infrared light.
- ASTER data is used to create detailed maps of land surface temperature, emissivity, reflectivity, and elevation.

ASTER Dataset: Technical Challenges

- Testing will be done based on pixels
- Goal: Region-based classification and identify high level concepts
- Solution
 - Grouping adjacent pixels that belong to same class
 - Identify high level concepts using ontologybased mining

Sketches: Process of Our Approach





Ontology-Driven Mining

- We have developed domain-dependent ontologies
 - Provide for specification of fine grained concepts
 - Concept, "Residential Area" can be further categorized into concepts, "House", "Grass" and "Tree" etc.
- Generic ontologies provide concepts in coarser grain

Challenges

- Region growing
 - Find out regions of the same class
 - Find out neighboring regions
 - Merge neighboring regions
 - Not scalable
 - Irregular regions
 - Of different sizes
 - Hard to track boundaries or neighboring regions
- Pixel merging
 - Only neighboring pixels considered
 - Pixels are converted into Concepts
 - Linear

Output:

	Water	Barren Land	Grass	Tree	Building	Road	House	Total	Accuracy(%)
Training	1175	1005	952	887	1041	435	1584	7079	99.8
Test	1898	1617	1331	1479	768	648	1364	9105	89.25

Table 1. Training and Test Pixels and Accuracy

Table 2. Confusion Matrix for Independent Test Data

Class	Predicted									
Class	Water	Barren Land	Grass	Tree	Building	Road	House			
Water	1898	0	0	0	0	0	0			
Barren Land	0	1225	216	0	143	33	0			
Grass	0	15	1175	54	69	0	18			
Tree	0	0	0	1454	0	0	25			
Building	0	1	0	0	578	189	0			
Road	0	0	0	0	143	500	5			
House	0	0	0	0	9	59	1296			
Accuracy	100.00	75.76	88.28	98.31	75.26	77.16	95.01			

Security and Privacy Challenges

Security

- Policy (context, association, event, time-based)
- Access control, accountability
- Policy integration
- Privacy
 - What does it mean to ensure privacy for geospatial data?
 - Protect the location of an individual?
 - If your residence can be captured by Google maps, then how can you protect it?

