Automating the Detection of Anomalies and
Trends from Text
NGDM'’07 Workshop

Baltimore, MD
Michael W. Berry

Department of Electrical Engineering & Computer Science
University of Tennessee

October 11, 2007

our

1/40



Nonnegative Matrix Factorization (NNMF)
m Motivation
m Underlying Optimization Problem
= MM Method (Lee and Seung)
m Smoothing and Sparsity Constraints
m Hybrid NNMF Approach

Anomaly Detection in ASRS Collection
m Document Parsing and Term Weighting
m Preliminary Training
m SDMOQ7 Contest Performance

NNTF Classification of Enron Email
m Corpus and Historical Events
m Discussion Tracking via PARAFAC/Tensor Factorization
m Multidimensional Data Analysis
m PARAFAC Model

References

our

/ 40



NNMF Origins

m NNMF (Nonnegative Matrix Factorization) can be used to
approximate high-dimensional data having nonnegative
components.

m Lee and Seung (1999) demonstrated its use as a sum-by-parts
representation of image data in order to both identify and
classify image features.

m Xu et al. (2003) demonstrated how NNMF-based indexing
could outperform SVD-based Latent Semantic Indexing (LSI)
for some information retrieval tasks.
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NNMF for Image Processing

Ai
Original

MF

Sparse NNMF verses Dense SVD Bases; Lee and Seung (1999)
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NNMF Analogue for Text Mining (Medlars)

term

term

Interpretable NNMF feature vectors; Langyville et al. (2006)
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Derivation

= Given an m X n term-by-document (sparse) matrix X.

m Compute two reduced-dim. matrices W ,H so that X ~ WH;
W is mxrand His r x n, with r < n.

m Optimization problem:
min || X — WH||?
W!n” || ||F7

subject to Wj; > 0 and H;; > 0, Vi, .

m General approach: construct initial estimates for W and H
and then improve them via alternating iterations.

6
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Minimization Challenges and Formulations
[Berry et al., 2007]

m Local Minima: Non-convexity of functional
f(W,H) = %HX — WH||2F in both W and H.

m Non-unique Solutions: WDD~!H is nonnegative for any
nonnegative (and invertible) D.

= Many NNMF Formulations:

m Lee and Seung (2001) — information theoretic formulation
based on Kullback-Leibler divergence of X from WH.

m Guillamet, Bressan, and Vitria (2001) — diagonal weight matrix
Q used (XQ ~ WHQ) to compensate for feature redundancy
(columns of W).

m Wang, Jiar, Hu, and Turk (2004) — constraint-based
formulation using Fisher linear discriminant analysis to improve
extraction of spatially localized features.

m Other Cost Function Formulations — Hamza and Brady (2006),
Dhillon and Sra (2005), Cichocki, Zdunek, and Amari (2006)
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Multiplicative Method (MM)

= Multiplicative update rules for W and H (Lee and Seung,
1999):
Initialize W and H with nonnegative values, and scale the
columns of W to unit norm.
Iterate for each c, j, and i until convergence or after k
iterations:

W' X)
1 HC' C ( o
B He = He WH)q + «

XH")
3 W w,X)e
B Wee = We e + e
Scale the columns of W to unit norm.
m Setting € = 102 will suffice to avoid division by zero
[Shahnaz et al., 2006].
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Multiplicative Method (MM) contd.

MULTIPLICATIVE UPDATE MATLAB®CopE FOR NNMF
W = rand(m,k); % W initially random
H = rand(k,n); % H initially random
for i = 1 : maxiter
H=H*(WTA) ./ (WTWH + ¢);
W =W * (AHT) ./ (WHHT + ¢);

end
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Lee and Seung MM Convergence

m Convergence: when the MM algorithm converges to a limit
point in the interior of the feasible region, the point is a
stationary point. The stationary point may or may not be a
local minimum. If the limit point lies on the boundary of the
feasible region, one cannot determine its stationarity
[Berry et al., 2007].

m Several modifications have been proposed: Gonzalez and
Zhang (2005) accelerated convergence somewhat but
stationarity issue remains; Lin (2005) modified the algorithm
to guarantee convergence to a stationary point; Dhillon and
Sra (2005) derived update rules that incorporate weights for
the importance of certain features of the approximation.
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Hoyer's Method

m From neural network applications, Hoyer (2002) enforced
statistical sparsity for the weight matrix H in order to enhance
the parts-based data representations in the matrix W.

= Mu et al. (2003) suggested a regularization approach to
achieve statistical sparsity in the matrix H: point count
regularization; penalize the number of nonzeros in H rather
than Z’J HU

m Goal of increased sparsity (or smoothness) — better
representation of parts or features spanned by the corpus (X)
[Berry and Browne, 2005].
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GD-CLS — Hybrid Approach

m First use MM to compute an approximation to W for each
iteration — a gradient descent (GD) optimization step.

m Then, compute the weight matrix H using a constrained least
squares (CLS) model to penalize non-smoothness (i.e.,
non-sparsity) in H — common Tikohonov regularization
technique used in image processing (Prasad et al., 2003).

m Convergence to a non-stationary point evidenced (proof still
needed).
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GD-CLS Algorithm

Initialize W and H with nonnegative values, and scale the
columns of W to unit norm.
Iterate until convergence or after k iterations:

(XHT)ic
(WHHT),'C + €
Rescale the columns of W to unit norm.
Solve the constrained least squares problem:

B W, — W; , for cand i

min{[[X; — WH;[|3 + A H;l3},
J
where the subscript j denotes the j* column, for j =1,..., m.

® Any negative values in H; are set to zero. The parameter \ is
a regularization value that is used to balance the reduction of
the metric || X; — WH;||3 with enforcement of smoothness and

sparsity in H.
p y ur
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Two Penalty Term Formulation

® Introduce smoothing on W) (feature vectors) in addition to
Hk:
: 2 2 2
min{I1X — WHIE + a|WIB + 5]l HI},

where || - || is the Frobenius norm.
m Constrained NNMF (CNMF) iteration:

WTX), — BH,
(WTWH) + e

Hej < Hgj (

(XHT)ic — aW;e
(WHHT)ic + €

Wic «— Wi
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Improving Feature Interpretability

Gauging Parameters for Constrained Optimization

How sparse (or smooth) should factors (W, H) be to produce as
many interpretable features as possible?

To what extent do different norms (/1, , Iro) improve/degradate
feature quality or span? At what cost?

Can a nonnegative feature space be built from objects in both
images and text? Are there opportunities for multimodal document
similarity?
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Anomaly Detection (ASRS)

m Classify events described by documents from the Airline
Safety Reporting System (ASRS) into 22 anomaly categories;
contest from SDMOQ7 Text Mining Workshop.

m General Text Parsing (GTP) Software Environment in C++
[Giles et al., 2003] used to parse both ASRS training set and a
combined ASRS training and test set:

Dataset Terms ASRS Documents
Training 15,722 21,519
Training+Test 17,994 28,596 (7,077)

m Global and document frequency of required to be at least 2;
stoplist of 493 common words used; char length of any term
€ [2,200].
m Download Information:
GTP: http://www.cs.utk.edu/~1si
ASRS: http://www.cs.utk.edu/tmw07 or
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Initialization Schematic
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Anomaly to Feature Mapping and Scoring Schematic
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Training/Testing Performance (ROC Curves)

m Best/Worst ROC curves (False Positive Rate versus True
Positive Rate)

ROC Area
Anomaly | Type (Description) Training | Contest
22 Security Concern/Threat .9040 .8925
5 Incursion (collision hazard) .8977 .8716
4 Excursion (loss of control) .8296 .7159
21 lliness/Injury Event .8201 .8172
12 Traffic Proximity Event .7954 7751
7 Altitude Deviation 7931 .8085
18 Aircraft Damage/Encounter 7250 7261
11 Terrain Proximity Event 7234 .71575
9 Speed Deviation .7060 .6893
10 Uncommanded (loss of control) | .6784 .6504
13 Weather Issue .6287 .6018
2 Noncompliance (policy/proc.) .6009 .5551
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Anomaly Summarization Prototype - Sentence Ranking

le Create Help

idf_scoreset | v

100 Show

Document | Position|_Score Sentence
148 1 430.0 1148 instruct 1o cross pett intersect at and maintain feet at petti turn 1o head deoree
2210|1001 first i carry a squeegee and squeegeed the windshield before the start sequence
158.0 963 in tegucigalpa mhtg it was call to my attention that there was damage in the low cargocompartmeant
074.0 [airirafficcontrol then clear us direct Viu direct kwang intersect and maimiain fest at which time my copiloir...
54.0 1199 on descend ino cit airport from northeast approach mayos intersect from northeast we were clear
46.0_|we were eventual clear to fly airway bywayof kikit but mistake intercept and fly airway prior to kikit
19.0 |1112 during an instr ulesflight from winder 10 punta gorda flightlevel radio co.
14.0 |oninstr ulasflight plan arrive to ort center clear me for visual approach when i advise zan that.
097 clearance was to cross delancy veryhightr dny at lightleval
092 after i finish brief and ran the taxichecklist ramp control call and say that since we were an andys t.
e part remove were not prma tec| dsorder part manufaciure approve technic standard ord
079 we were clear to cross drr intersect on the rokit arrive ai feet and upon reach drxir intersect wrn
056 fly the fortl three arriva to miami opf airport opalocka | was clear to descend to Teet after pass fort.
039 zoa aintraificcontrol had vector us norih of swr ven/highfr ionalradiorange on the ..
when we carry volt alkaline now they not only have a terminal protactor in place they are also held on wit
1013 just want to reinforce the problem with carry battery with unprotected terminal as describe by the
952 visualflightrulesflight from greenville pa 1o ky land for fuel
we were procesd direct to Iho veryhighfr ionalraciorange for the brigham city arrive int
when this balance wbe was remove and inspact the etechnician remark that the bead.
880 i had plan a short crosscountry from ash to sfm to circumyvent pease intern 1o ash
factor involve include preoccupy with the descend checklist initial the clearance (0 cross tiorr was issue a
[B58 at feet on the cince arrive 10 cvg airport zid issue a clearance to cross the tgrT intersect at feet
[BS6 as we were descend down from flightlevel to a of feet airtrafficcontrol amend clearance
the man was french but lefi the on an american visa and then present the french with a franch visa,
i was nauticalmile east of carl folsom airport when i went instrumentrmeteorologicalconditions on a degree
/815 locate event occur between the vicinity of lamoni veryhighr ionalradiorange and s
/as the captain try differ method 1o comact zhu i continue on our flight plan rout which was newla veryhigh
426 on september i was the firstofficer on a flight from saltillo mexico 1o laredo tx
[the nextcontroller approach ask my posit and altitude over carir or just past carr
ircraft y was suppose 10 be over kedzi outermarker on a west head but was at cadon outermarker on a
uestion which the alert and benevolent control had ask was whether we want flightlevel or flightlevel
after land on runway i taxiedoff the runway on taxiway north and held short of runway as instruct
93 passenger x was oblivious 1o number south instruct to return 1o seat during climb s
we enter the sdf airport airspace over darby imersect which is southeast of sdi airpart
187 while approach acy airport or ven veryhighfre quencyomnidirectionalradiorange from the northeast
1185 in an attempt to not delay depart i told firstofficer that | would ook at logbook after pushback

Sentence rank = f(global term weights) — B. Lamb
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Improving Summarization and Steering

What versus why:

Extraction of textual concepts still requires human interpretation
(in the absence of ontologies or domain-specific classifications).

How can previous knowledge or experience be captured for feature
matching (or pruning)?

To what extent can feature vectors be annotated for future use or
as the text collection is updated? What is the cost for updating
the NNMF (or similar) model?
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Unresolved Modeling Issues

Parameters and dimensionality:

Further work needed in determining effects of alternative term
weighting schemes (for X) and choices of control parameters
(e.g., a, 8 for CNMF).

How does document (or object) clustering change with different
ranks (or features)?

How should feature vectors from competing models (Bayesian,
neural nets, etc.) be compared in both interpretability and
computational cost?

our

22 /40



Email Collection

m By-product of the FERC investigation of Enron (originally
contained 15 million email messages).

m This study used the improved corpus known as the Enron
Email set, which was edited by Dr. William Cohen at CMU.

m This set had over 500,000 email messages. The majority were
sent in the 1999 to 2001 timeframe.
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Enron Historical 1999-2001

m Ongoing, problematic, development of the Dabhol Power
Company (DPC) in the Indian state of Maharashtra.

m Deregulation of the Calif. energy industry, which led to rolling
electricity blackouts in the summer of 2000 (and subsequent
investigations).

m Revelation of Enron’s deceptive business and accounting
practices that led to an abrupt collapse of the energy colossus
in October, 2001; Enron filed for bankruptcy in December,
2001.
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Multidimensional Data Analysis via PARAFAC
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Temporal Assessment via PARAFAC
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Mathematical Notation

m Kronecker product

AnB -+ AuB
A®B= : KR :
AmB -+ AmnB
m Khatri-Rao product (columnwise Kronecker)

A@B:(A1®Bl An®Bn)
m Outer product
A11Bin -+ AuBm
Aro B = : :
AmiBi1 -+ AmiBm
or
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PARAFAC Representations

m PARAllel FACtors (Harshman, 1970)
m Also known as CANDECOMP (Carroll & Chang, 1970)
= Typically solved by Alternating Least Squares (ALS)

Alternative PARAFAC formulations

,
Xijk =~ Z Air Bjr Cir
i=1

.

X =~ ZA; o Bj o Cj, where X is a 3-way array (tensor).
i=1

Xk ~ A diag(Cy.) BT, where X is a tensor slice.

XK ~ A(C® B)T, where X is matricized.
or
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PARAFAC (Visual) Representations

Scalar form

Tensor slice form
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Nonnegative PARAFAC Algorithm

m Adapted from (Mgrup, 2005) and based on NNMF by (Lee
and Seung, 2001)

XK —ACoB)TlF = |IX*N—B(CoA)T||F
= XV —C(BoA)F

m Minimize over A, B, C using multiplicative update rule:

(XIXJKz)ip
A; A~ __Zlie  7_(CoB
p T TIPAZTZ), + € (Co8)
(X% 2)j,
B; Bj, o 22E - A
e T HM(BZTZ)j, + € (con
(XKXIJZ)
C Copree 200 7 _(BOA
ke kp(CZTZ)kp—i—e (B®A)
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Tensor-Generated Group Discussions

m NNTF Group Discussions in 2001
m 197 authors; 8 distinguishable discussions
= “Kaminski/Education” topic previously unseen
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Gantt Charts from PARAFAC Models
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Day-level Analysis for PARAFAC (Three Groups)

m Rank-25 tensor for 357 out of 365 days of 2001:
A (69,157 x 25), B (197 x 25), C (357 x 25)
m Groups 3,4,5:
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Day-level Analysis for NN-PARAFAC (Three Groups)

m Rank-25 tensor (best minimizer) for 357 out of 365 days
of 2001: A (69,157 x 25), B (197 x 25), C (357 x 25)
m Groups 1,7,8:
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Day-level Analysis for NN-PARAFAC (Two Groups)

m Groups 20 (California Energy) and 9 (Football) (from C factor
of best minimizer) in day-level analysis of 2001:

Authors uthors
g i *
e &
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Four-way Tensor Results (Sept. 2007)

m Apply NN-PARAFAC to term-author-recipient-day array
(39,573 x 197 x 197 x 357); construct a rank-25 tensor
(best minimizer among 10 runs).

m Goal: track more focused discussions between individuals/
small groups; for example, betting pool (football).

3-way Results
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Four-way Tensor Results (Sept. 2007)

m Four-way tensor may track subconversation already found by
three-way tensor; for example, RTO (Regional Transmission
Organization) discussions.

3-way Results
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NNTF Optimal Rank?

m No known algorithm for computing the rank of a k-way array
for k > 3 [Kruskal, 1989].

m The maximum rank is not a closed set for a given random
tensor.

m The maximum rank of a m X n X k tensor is unknown:; one
weak inequality is given by

max{m, n, k} < rank < min{m x n,m x k,n x k}

m For our rank-25 NNTF, the size of the relative residual norm
suggests we are still far from the maximum rank of the 3-way
and 4-way arrays.
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Further Reading (contd.)
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» W. Xu, X. Liu, and Y. Gong.
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