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Abstract

Many projects analyze application overlay networks on
the Internet using packet analysis and network flow data.
This is infeasible on many networks: either the volume of
data makes packet inspection intractable, or privacy con-
cerns forbid packet capture and require the dissociation of
network flows from users’ identities. We describe a frame-
work for exploration of usage patterns even under circum-
stances where the only available data is anonymized flow
records. We offer two proofs of concept using data gathered
from Internet2. In the first, we uncover distributions and
scaling relations in host-to-host networks with implications
for capacity planning and application design. In the sec-
ond, we classify network applications based on properties
of their overlay networks, yielding a taxonomy that allows
us to identify the functions of unknown applications.

1 Introduction

Understanding the structure and dynamics of the virtual
networks formed by network users has become a major re-
search focus. While these networks are of great sociolog-
ical interest, understanding their properties is also impor-
tant for research topics as varied as intrusion detection and
network capacity planning. This results in a methodologi-
cal challege: researchers in many areas want to mine net-
work data, but the primary data sources — captured packets
and network flow data — are vast and contain sensitive per-
sonal information. Using this data can require computing
power and network access unavailable to most interested
researchers. Even more recent systems that use only net-
work flow data still associate flow records with users’ IP
addresses, raising privacy concerns that limit data distribu-

tion. The Internet2 network, for example, forbids distribu-
tion of non-anonymized flow data outside the organization.

Given that packet inspection is intractable for high-speed
networks and access to raw data raises privacy concerns,
the question becomes: Can anonymized network flows still
yield useful insights for network researchers? The tradi-
tional view of flows as rows in a large relational database
makes this sound unpromising; all we know is the mag-
nitude of flows between two unreliably identified ports on
two unknown hosts. However, this purely relational view
has been superceded by approaches that use flows to build
a complex host-to-host network, as proposed independently
by our group [6] and by Karagianniset al. [4]. Such an
approach allows the application of many machine learning
and data mining techniques. Their success in traffic classifi-
cation and anomaly identification suggests great promise in
treating flows as feature vectors rather than simple tuples.

We present an analysis framework that extends these ap-
proaches by using flow records to build graph representa-
tions in which the nodes are hosts, ports, or applications,
allowing us to apply machine learning techniques and ap-
proaches from complex networks analysis. This framework
offers a number of novel contributions to Internet data min-
ing: (1) We define a weighted digraph representation of
flow data that allows for several single-mode projections,
defining host-to-host (behavioral), port-to-host (functional),
and port-to-port (application) networks; (2) We use only
anonymized flow data, requiring no access to raw packets
or the actual addresses used by a flow; (3) We analyze these
graphs using complex networks research techniques, show-
ing the utility of this approach in two applications: (i) we
distinguish different classes of traffic by their distributions
and scaling relations, with implications for modeling, ca-
pacity planning, and design; and (ii) we show how the topo-
logical properties can be used to develop a taxonomy of ap-



Figure 1. Typical Abilene network activity.

plications and use this hierarchy to identify the function of
unknown applications; and (4) We argue for the tractabil-
ity of our approach and its utility in real-time analysis. Our
system is not a traffic classifier. We are concerned not with
what flowsare, but with what theydo: how they affect the
network and what they can predict about future activity.

Though space forbids detailed background on network
flow analysis and related research efforts, several con-
temporary projects are similar to our described approach,
but differ in privacy considerations, the entities modeled,
etc. [5, 2, 4]. For detailed information on network flows
and analysis tools, we recommend CAIDA’s Web site [1].

2 Graph construction

Our data source consists of anonymized flow data typical
of that available to a broad audience of researchers and in-
cludes neither host identities nor captured packets. The Abi-
lene network (a part of Internet2[3]) provides an excellent
source of flow data for studying user behavior. This high-
speed TCP/IP data network spans the US and provides con-
nectivity to several hundred research laboratories, colleges,
and universities. Its backbone consists of 10-Gbps fiberop-
tic links connecting eleven high-performance routers. The
network’s primary intent is for academic traffic, but it is
increasingly peering with the commodity Internet as well.
Among its users are hundreds of thousands of undergradu-
ates who are among the first adopters of new applications.
Abilene also provides transit for dozens of international
academic networks, serving as a major path between Asia
and Europe and giving its data international character. Abi-
lene is also uncongested even during peak hours (see Fig-
ure 1), offering a view of what users do when the network
does not impede their behavior.

Current technology prevents collection of flow data for
every network connection; each router samples about 1%
of packets to generate flow information, which is sent from
each router to our analysis system. In accordance with Inter-
net2 policy, this system removes the actual IP addresses of
each flow, replacing them with index values that are main-
tained for a single day. We save only these anonymized
flows, which total 700 million flows on a typical day. At

48 bytes per record, a full day of data thus consumes over
30 GB of disk. Each record describes the directed trans-
mission of data between a pair of hosts and ports without
identifying which is the client and which is the server. We
generate several graphs from these flow records, which we
termbehavioral, functional,andapplicationnetworks.

We derive the behavioral network for an application by
first recovering the roles of clients and servers. This is
done using the number of flows that use a port: because
clients use ephemeral port numbers and servers’ ports must
be known, the server will almost always be the endpoint
with the more common port number. We thus partition all
hosts into a subsetC = {i1, · · · , iNC

} that act as clients and
a subsetS = {j1, · · · , jNS

} that act as servers. Some com-
puters, especially those in P2P networks, act as both and are
assigned to both sets. We use the setsC andS to construct
a behavioralgraph in which the nodes represent individual
hosts and edges represent the directed transmission of data,
aggregated over the course of a day. Each weightwij rep-
resents the (sampled) data sent from a client to a server dur-
ing a day, andwji represents the amount of data sent in the
opposite direction. This yields a bipartite digraph between
clients and servers, weighted by aggregate traffic. This rep-
resentation is used for the analysis in the following section.

When we build afunctional graphamong server ports
and client hosts, we can capture the variety of activities
in which each user engages. Each weight represents the
amount that a host has used a particular port. (We con-
sider only TCP data simply because UDP data on Abi-
lene is minor and dominated by test traffic.) Since each
port roughly corresponds to an application, this graph can
be used to characterize applications by their host profiles:
the traffic volumes exchanged by their users. We can then
study the associations among applications by comparing
their profiles, using the intuition that correlated use of ap-
plications is evidence they have a similar purpose, just as
papers with consistent co-citations are likely related. We
thus constructapplication graphshaving ports as nodes and
weighted edges representing their similarities, which can be
used to classify unknown applications based on their ob-
served usage. In Section 4 we present a rough taxonomy of
applications and predict the function of unknown applica-
tions without inspecting any actual packet.

3 Behavioral network analysis

Our first case study shows how analysis of behavioral
graph yields insight into capacity planning and application
design. This analysis is based on 24 hours of Internet2 flow
data gathered on April 14, 2005. This was a typical day,
with no known outages or disruptions, and our findings are
consistent with earlier studies [6]. On this day, our analysis
system received over 600 million flows involving 15 million
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Figure 2. PDFs for degree and strength in the
behavioral graph, shown for all data, the Web,
and P2P. We use log-sized histogram bins
normalized by bin width and distribution size.
The annotated lines show power-law approx-
imations, with R2 ≥ 0.995.

hosts. Of these flows, 41.3% were Web-related and 13.1%
involved known P2P applications. The remaining flows de-
scribe all other traffic, including attacks and test traffic. Of
the hosts, 5.8 million were observed behaving as clients and
nearly twice as many behaving as servers. This high ratio of
servers to clients indicates scanning activity: rogue clients
search for vulnerable servers. The opposite is the case for
both Web and P2P applications, where we find only 20% as
many servers as clients. The bipartite graph containing all
hosts and applications has 131 million edges. If we exam-
ine the subgraphs for particular classes of application, we
find that the Web graph contains 38.0% as many edges as
the full graph and the P2P graph has only 6.0%. The total
volume of traffic recorded is 1.85 TB (17.4% of which is
Web-related); because of packet sampling, the true amounts
are actually 100 times greater.

Unfortunately, these statistics tell us little about the role
a typical user plays. We thus turn to thestructureof these
subsets of the behavioral network, first examining distribu-
tions of degreeand strengthin the graph. Given a node
N with i initial edges andj terminal edges, we define
the degree asdN = i + j and the strength assN =∑i

k=1 wN,Nk
+

∑j
k=1 wNk,N , wherewa,b is the weight of

the edge froma to b. The degree of a node reflects the
number of users with which it has exchanged data, and the
strength reflects the amount of data. We can also aggregate
traffic by specific ports to inspect the subgraphs for individ-
ual applications.

Because these distributions reflect decisions made by
many individual users, we might expect them to be nor-

Figure 3. Behavior of s as a function of k for all
categories of traffic. The tones represent the
density of s normalized within each k-bin, on
a log scale. The plotted points show 〈s(k)〉,
and the lines show power-law approximations
to the data, with R2 ≥ 0.999.

mal. We see in Figure 2 that this is far from the case: all
distributions shown have extremely long tails, some span-
ning almost ten orders of magnitude. For instance, the mean
strength of a client is 318 kB, but the standard deviation is
72.6 MB, making the level of fluctuation 100 times larger
than the mean. So skewed are these distributions that for
the Web and total traffic, we are able to approximate both
k ands with a power-law approximationP (n) ∼ n−γ over
several orders of magnitude. The slope of these approxima-
tions says much about user behavior. When2 < γ < 3,
the second moment〈n2〉 =

∫
n2P (n)dn diverges; the vari-

ance is not intrinsic to the distribution and is bounded only
by the size of the sample. In this case,〈n〉 is no longer typ-
ical; lacking any characteristic mean, we have “scale-free”
behavior. We may find a client that has contacted any num-
ber of servers or downloaded any amount of data, bounded
only by the sample size. Whenγ < 2, as for Web servers,
the situation is more dramatic. In this case, even the first
moment〈n〉 =

∫
nP (n)dn diverges and is bounded only

by sample size. This extreme heterogeneity indicates that
no “best scale” exists for the design of general-purpose Web
server. In the case of P2P networks, the heavy-tailed distri-
butions have a definite exponential cutoff, after which the
PDF decays more quickly than a power law. This may be
due to the limited capacity of most individual hosts on P2P
networks, in which case we can expect the tail to lengthen
over time as the average computer becomes more powerful.

The relationship between the number of hosts contacted
(degree) and the amount of data exchanged (strength) also



helps to describe user behavior. Because of the power-law
nature of these distributions, it is unsurprising that strength
increases as a function of degree, again following a power
law 〈s(k)〉 ∼ kβ , as shown in Figure 3. The value ofβ
is of primary interest:β < 1 implies a sublinear relation-
ship;β = 1, a linear relationship; andβ > 1, a superlinear
relationship. The case of server behavior is linear or sublin-
ear (β ≤ 1), but for Web clients,β = 1.2 ± 0.1, a clearly
superlinear relationship. This means the amount of data ex-
changed witheachWeb server tends to increase as a user
contacts more servers: the more sites surfed, the more data
is received from each site. This non-linearity may be the
basis for a method to disambiguate single users from Web
crawlers. The relationship betweensin andsout may also
aid in discovering of open proxy servers, which should ex-
hibit symmetry in their role in the behavioral network.

4 Application network analysis

In our second case study, we aggregate flows to build
a graph in which the nodes are applications and the edges
are measures of behavioral similarity among them. Hierar-
chical clustering of the nodes yields a taxonomy that can
predict the function of unknown applications.

Non-standard applications comprise much of Internet
traffic (over 40% of our sample). Researchers have only
sketchy knowledge of the fauna of cyberspace even as the
demand for reliable identification increases. Applications
are also onlygenerallyidentified by their port number, as
we assumed in the previous section. This is accurate for a
lot of traffic, but we must consider data generated by appli-
cations running on non-standard ports; for example, many
users evade firewalls by running P2P applications on the
Web port. Users disguise their activity by masquerading as
other applications or using “ephemeral” ports not used by
any known protocol. They can also evade security systems
through encryption and tricks such as packet fragmentation.
As a result, while we can monitor theexistenceof applica-
tions, we often do not know what kind of communication
they support.

We approach this problem by examining the relation-
ships between applications and clients (servers are less
likely to use multiple applications or represent the actions
of a single user). To describe client behavior, we define the
port strengthof a client nodei ∈ C assp

i =
∑

j∈C∪S wp
ij ,

wherep is a port. The port strength of a node reflects the
amount of data it has exchanged using an application. We
thus obtain a vector for each application, whose elements
are the volume of data for that application for each host:
~p = (sp

1, . . . , s
p
|C|). We then measure the correlation of use

between two applications~p and~q using their cosine similar-
ity: σ(~p, ~q) = (~p · ~q)/(‖~p‖ · ‖~q‖). This quantity is zero in
the case of orthogonal use and one in the case in which ev-
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Figure 4. Correlation of use of applications.
We show the 38 ports with highest traffic, two
of which are used by unknown applications
(see text). The matrix shows the correlation
between each pair of ports. The dendrogram
is obtained using Ward’s algorithm [8] after
mapping similarity to distance. The ports are
manually colored by group: P2P (pink); tradi-
tional client-server (blue); and Web (green).

ery host makes equal use of the applications. The result is a
connected graph having ports as nodes and strength correla-
tions as weights. We used a standard clustering algorithm to
group the most highly used TCP ports by their correlations,
as shown in Figure 4. The Web is so pervasive so as to
be strongly correlated with nearly every application, though
the different Web ports form a strong cluster among them-
selves. The groupings of the remainder also capture their
functions. Bittorrent and Gnutella use a variety of ports that
combine to form tight clusters. Standard client-server ap-
plications form groups, one including email, chat, and file
transfer protocols, and another including those for stream-
ing music and remote logins. Other P2P applications are
clustered together, suggesting that many users employ more
than one file-sharing application.

This clustering mirrors our existing understanding of the
network but is of little use unless it can predict the nature
of unknownapplications. To confirm the utility of our tech-
nique, we used the similarity data to classify 16 ports un-
known to us because of their unofficial use or their obscu-
rity. Two such applications are included in Figure 4. Port
388 is coupled most strongly with FTP and Hotline; we
found it to be assigned to “Unidata/LDM,” a file transfer
system used for moving large sets of meterological data.



Table 1. Predicted uses of ports running un-
known applications and their actual uses, as
derived from online sources.

Port Predicted Actual Match?

388 traditional file transfer weather data transfer yes

19101 P2P chat or file transfer individual file shares yes

9080 P2P with central index team collaboration yes

8090 Windows P2P w/ Web svc. Weblog server yes

5020 Windows P2P file transfer BBFTP file transfer partial

42899 P2P file sharing or trojan (unknown) unknown

8301 P2P file sharing or trojan several trojans partial

1025 trojan many different trojans yes

20000 P2P, probably BitTorrent BitTorrent yes

59174 P2P file sharing or trojan (unknown) unknown

20001 P2P file sharing or trojan several trojans partial

15002 P2P file sharing or trojan biology collab. tool partial

16881 P2P, probably BitTorrent BitTorrent yes

9000 P2P file sharing or trojan several trojans partial

3124 Windows P2P file transfer Web proxy (Windows) yes

39281 P2P file sharing or trojan grid-based computing partial

Port 19101 was grouped with both IM and P2P applications,
suggesting that it might be P2P, but relying on individual
contact for file transfers. This allowed us to form search
queries to find that the port is used by “Clubbox,” a Ko-
rean file-sharing program used to trade entire TV programs.
Sniffing Clubbox data would have been of little use to any-
one unfamiliar with Korean; the application graph gave us
information that packet analysis could not.

The predictions for all 16 ports are shown in Table 1;
eight were entirely successful. The partial predictions stem
from applications clustered with both P2P ports and those
strongly associated with malicious activity (IRC and SQL
Server). We lacked sufficient experience to judge which
purpose was more likely. This ambiguity also hints that sys-
tems involved with P2P applications may be compromised
more often than usual, possibly through the applications
themselves. We could not verify our predictions for two
ports because they were in use only transiently during our
sample period; they no longer carry appreciable traffic. We
also observe that while Web proxies predate P2P networks,
their function is similar.

5 Conclusions

In our first case study, our graph-centric analysis reveals
aspects of user behavior that are essential for agent-based
modeling approaches, with implications for network man-
agement and epidemiology. The pervasiveness of heavy
tails implies that user behavior rarely follows normal dis-
tributions, but is so diverse as to make mean values mean-
ingless. Superlinear behavior in Web clients demands that
models be able to account for non-trivial coupling of degree
and strength. The differences between the Web and P2P
graphs imply that we can construct signatures for differ-
ent application types, allowing the identification of hidden
applications without violating user privacy. Finally, while

many security products use rate thresholds to detect traffic
anomalies [7], our results show that we can expect many
false alarms even from normal traffic. The analysis of be-
havioral networks may offer an effective approach for de-
tecting malicious and anomalous behavior.

The application clusters identified in our second study
show that one can easily infer traits of the activity on a port
even if the actual application is unknown. We can group
applications by the way theyaffectthe network rather than
their code base or stated purpose. The potential becomes
clear when we consider how these clusters may evolve as
people use existing applications in radically different ways.
Usenet began as a system for propagating small text articles
and NNTP has not changed — but its traffic now consists
mostly of CDs, DVDs, and other audiovisual data. The pro-
tocol has not changed, but the way people use it has.

Our framework offers a way of examining user behav-
ior through analysis of the graph structures formed by their
actions. Because we avoid any use of raw packets or non-
anonymized data, a wide audience of researchers can test
these techniques for themselves. None of our processing
steps require unusual resources; a single workstation can
perform the analysis of the first case study in less than 30
minutes. The analysis of the second case study is quadratic
in the number of applications but can still be performed in
less time than taken to collect the data. Finally, we are
working to make our analysis tools publicly available.
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