
Intelligent Pattern Mining via Quick Parameter Evaluation
(Extended Abstract)

Mario Boley
Fraunhofer Institute IAIS, Sankt Augustin, Germany

mario.boley@iais.fraunhofer.de

Abstract

When embedded in a larger workflow, pattern mining al-
gorithms can be required to produce huge outputs. In this
situation the usual trial-and-error parameter twiddling is
infeasible, because every mining run consumes a consider-
able amount of time. Instead an intelligent mining process
is needed that is able to provide good parameter choices
on its own. To realize this vision, quick parameter evalu-
ation algorithms are needed that can give insights into the
size and structure of a pattern mining’s result set before the
actual mining is started. The design of such procedures is
a challenging algorithmic problem. As a first step towards
a possible solution we empirically evaluate an exemplary
implementation of a sampling approach.

1. Introduction

Data mining tasks increasingly often appear embedded
in larger workflows with an automatized subsequent pro-
cessing of their results. An example for this situation is
feature extraction for classification tasks dealing with huge
scientific datasets, but it can also occur in other comput-
ing environments. Pattern mining algorithms from plain flat
table domains (e.g. Apriori [1], FP-growth [6]) up to struc-
tured ones (e.g. gSpan [13], WARMR [10]) are common
for such applications. Since the subsequent processing is
performed automatically, miners are often required to pro-
duce substantially more output than for instance in the ex-
plorative data analysis setting. In this situation known algo-
rithms suffer from a lack of intelligence: On the one hand
they usually require the specification of several technical
parameters (frequency threshold for frequent pattern min-
ing, minimum confidence for association rules, time win-
dow size for sequence mining, etc.). On the other hand they
provide no guidance for how these parameters are to set for
a given input database. Moreover, the often applied trial-
and-error setting of parameters is very inefficient in the de-
scribed scenario, because when huge outputs are acceptable

the corresponding mining time can also be long even with
an efficient miner.

We contrast this unsatisfactory situation with the vision
of intelligent pattern mining algorithms, which are able to
forecast enough of their resulting output in order to either
set the technical parameters themself or to offer a small set
of reasonable settings to the user. As a consequence, users
would only have to make choices that they can be expected
to have a clear idea of. We will give a detailed application
scenario of this concept in Section 2 and argue that only
quick parameter evaluation algorithms can provide a gen-
eral method capable of fulfilling all of its requirements. The
unifying property of those algorithms is that they can com-
pute useful quantities of a mining algorithm’s output set in
a short amount of time that does not depend on the size of
that output. We discuss theoretical limitions for the design
of such algorithms and possible techniques to evade them
in Section 3. Then we briefly evaluate a straightforward im-
plementation of one of those techniques in Section 4. Our
experiment reveals encouraging results that give some ev-
idence for the general producibility of intelligent pattern
mining via quick parameter evaluation.

To the best of our knowledge, so far there is no general
approach dealing with the problem of intelligent and effi-
cient parameter choosing in pattern mining. In the context
of feature selection Cheng et al. [3] have recently investi-
gated the effect of the frequency parameter on the classifi-
cation quality and proposed one possible strategy for setting
this threshold. In general, finding methods that can quickly
evaluate the great variety of pattern mining parameters of
existing algorithms will be a challenge for researcher in the
coming years.

2. Practical Analysis

In order to work out the characteristic requirements of
intelligent pattern mining we have to specify this vision in
more detail. For that reason we now introduce an applica-
tion scenario dealing with a semi-automatized classification
task from computational chemistry. Here pattern mining is

used to extract a feature set to be used by a Support Vector
Machine (SVM). A more detailed discussion of this setting
can for instance be found in [4, 7]. It is important to point
out that the scenario does not rely on any specifics from
chemistry. Thus it can easily be transferred to other scien-
tific domains and in fact also to other automatized work-
flows that use pattern mining.

Application Scenario: Feature Extraction We have a
learning task dealing with a chemical dataset containing
around two million molecules. About hundred of them are
labeled according to a binary attribute, which is the target
of our learning task. Moreover, we want to use an SVM to
attack our problem. Since we can compute the kernel matrix
efficiently even for a huge number of features if the corre-
sponding support vectors are sparse, we would like to attain
a feature set containing roughly a million elements such that
no instance possesses more than a few hundred features. We
regard the molecules as labeled graphs and use an intel-
ligent constraint based closed frequent subgraph miner to
extract the features.

Entering our request for approximately a million pat-
terns in the output set, the miner tells us that we come
closest to our request with support thresholds of 98 cor-
responding to 800,000 closed frequent subgraphs and 97
corresponding to 1,300,000. For our second condition we
ask the miner to estimate the average number of patterns
contained in one molecule. It turns out that this quantity
is close to 20,000 even for a support threshold of 98. We
decide to add a minimum size constraint to the mining task
in order to reduce this number. Now we have a second
technical parameter to set: the minimum size threshold, i.e.
the minimum number of edges a subgraph has to contain
in order to be listed in the result set. The miner tells us
that with this threshold set to twelve we reach an average
number of contained patterns of 150 from a retained total
of 600,000 patterns. Each of the necessary computations so
far has been done in a few seconds. Now we are happy with
the parameter settings and start the actual mining process,
which will enumerate the feature set in approximately four
hours according to the miner’s prediction.

There is a number of key observations/requirements in
this scenario: The pattern mining is part of a bigger work-
flow and its result is further processed automatically. For
that reason a huge output size is acceptable and often even
desired in order to make use of all of the available computa-
tion power. Still there is a limit to the output size that guar-
antees the feasibility of the surrounding workflow. Thus,
we have an output size constraint. Furthermore, there is a
content constraint to the result that is at least of equal im-
portance as the output size constraint. For the time require-
ments we see that for a fixed time budget we want to use

as much time as possible for the actual mining process and
consequently minimize the time needed to determine set-
tings. Thus, a short setup time relative to the mining time is
desired. A final observation is that the specified constraints
are rough. They define rather magnitudes than exact lim-
its. We are dealing with soft bounds. A very simple yet
important general remark for pattern mining algorithms is
that they scale at least linear with the number of output pat-
terns, because every result pattern has to be printed at some
point. For that reason their time complexity is analyzed with
respect to the size if the output it has to produce (see [9]
for an introduction to output sensitive complexity analysis).
Similar observations would still hold if we transform the
sketched workflow to be fully automatized by removing the
user feedback loop. Thus, they are characteristic for intel-
ligent pattern mining. As a next step, we can now discuss
possible solutions for these requirements.

A practice often applied in frequent pattern mining is
stopping every run as soon as the computation time has ex-
ceeded a certain threshold corresponing to an output size
constraint or the elements listed so far violate content con-
straints. But consider the supposed ideal case of an algo-
rithm running in output linear time. Even then every rerun
requires at least time proportional to the maximum number
of result elements tolerable. The huge output size require-
ment implies that this parameter twiddling approach would
contradict the short setup time requirement and thus is in-
feasible. In fact, we see that the antagonistic requirements
of huge outputs and short setup time already imply the need
for algorithms that run in a time independent of the out-
put size. Moreover, these algorithms should give insights
into the size and structure of a pattern miner’s result set.
While the task of estimating the result set’s size is already
well defined, we get varying algorithmic tasks for varying
content constraints. Thus, we generally call algorithms sat-
isfying the above specification quick parameter evaluation
algorithms. Finally note that approximation algorithms are
perfectly acceptable in this context, because we are dealing
with soft bounds.

3. Theoretical Limits and Loopholes

For a theoretical analysis of the very general quick pa-
rameter evaluation task it is a good starting point to look at
the special case of frequent itemset mining. This is due to
two reasons. First, there is already a large body of theoret-
ical research devoted to this topic, and second, most of the
other pattern mining tasks are generalizations of frequent
itemset mining. This means that they can be used to simu-
late frequent itemset mining, and thus negative complexity
results propagate up to them.

Quickly checking whether a frequency threshold satisfies
an output size constraint implies to count efficiently the re-

sulting family of frequent itemsets. This counting problem
was shown in [5] to be #P-hard (see [12] for an introduction
to #P). Also the related problem of counting the number
of maximal frequent itemsets is #P-hard as shown in [14].
For other quantities that could help to estimate the shape
of a resulting frequent itemset family, and thus evaluate a
frequency threshold with respect to content constraints, the
computation was shown to be NP-hard: the maximum car-
dinality of a frequent itemset in [5] and the minimum car-
dinality of an infrequent itemset in [2]. However, as we
observed in Section 2 approximative solutions are sufficient
for our quest. A first indication that this might help is the
fact that the greedy algorithm approximates a minimum car-
dinality infrequent itemset within a logarithmic factor [2].

In the realm of counting, several hard problems have effi-
cient randomized approximation algorithms based on sam-
pling techniques. In particular with the help of the Markov
chain Monte Carlo method (see for instance [8] for an
introduction) fully polynomial randomized approximation
schemes (FPRAS) were designed. An FPRAS is an algo-
rithm that produces values within factors (1+ ε) and (1− ε)
of the target value with probability 1 − δ in a time polyno-
mial in the size of the input, 1/ε, and 1/δ. The Markov
chain Monte Carlo method is based on drawing samples
from large sets using a Markov chain that quickly converges
to its stationary distribution. See [11] for a survey on the use
and analysis of Markov chains in this context. We demon-
strate this technique with an exemplary implementation for
frequent itemset counting in Section 4. In general sampling
is perhaps the most promising approach towards quick pa-
rameter evaluation, because for most of the pattern mining
tasks it is possible to quickly draw samples from the out-
put set without fully computing it. This might lead to al-
gorithms with a time complexity independent of the output
size.

4. Randomized Counting

This section is devoted to the empirical evaluation of a
simple algorithm that uses the Markov chain Monte Carlo
method for frequent itemset mining. The goal is to attain
a procedure that quickly evaluates a frequency threshold
with respect to the number of frequent itemsets it produces.
Our parameter evaluation task can formally be described
as: Given a set of items I = {a1, . . . , an}, a transactional
dataset T , and a frequency threshold t, estimate the number
of frequent sets |F| with F = {X ⊆ I : |{T ∈ T : X ⊆
T}| ≥ t}.

It follows a brief description of our algorithm. Denote
by Fi the reduced family of frequent itemsets that contain
only items from {a1, . . . , ai}. For statistical reasons instead
of directly approximating the number |F| we estimate the

factors (resp. their reciprocals) of the product

|F| = |Fn|
|Fn−1|

× · · · × |F16|
|F15|

× |F15|

by drawing a sample S from |Fi|. The i-th reciprocal
|Fi−1|/|Fi| is then approximated by the fraction of ele-
ments of S that are also an element of Fi−1. The factor
|F15| is counted exhaustively by DFS enumeration. The
sampling from |Fi| is done using a simple Markov chain
that starts in the empty set. Subsequently, when in the cur-
rent set X , with probability 1/2 it chooses an item a ∈
{a1, . . . , ai} with uniform probability, which it removes if
a ∈ X or adds if a 6∈ X and X ∪ {a} ∈ F , and otherwise
stays in X .

As a test instance we randomly generated a dataset con-
taining 200 transactions over 25 items. Each transaction
was created using the following process: With probabil-
ity 9/10 uniformly choose a new item and include it into
the transaction, otherwise stop. This results in a very dense
dataset with a high expected number of frequent itemsets.

Figure 1.

For each frequency threshold t ∈ {16, . . . , 25} we
counted1 the number of frequent itemsets once with an ex-
haustive DFS enumeration and a hundred times with the
Monte Carlo (MC) algorithm. The DFS enumeration can
be expected to scale similar to frequent itemset mining al-
gorithms belonging to its family like for instance the FP-
growth algorithm [6], which is basically linear to the num-
ber of frequent sets. The time of the MC algorithm does
not depend on the number of frequent sets. It is essentially
determined by the size of the dataset and the desired accu-
racy, which in turn is determined by the used sample size
and the number of steps performed in each Markov chain
simulation. Since we did not change any of these, the time
consumed by the MC computation varied only by ±2 sec-
onds for each frequency threshold. Consequently, the per-
formace gap between exhaustive enumeration and random-
ized counting increased rapidly with the decreasing of the

1For our experiment we used a Python 2.4 implementation running on
an Intel Pentium D 3GHz with 2GB memory under SUSE Linux 10.0.

frequency threshold. See Figue 1 for an illustration of the
consumed time2 in seconds (y-axis) for each threshold (x-
axis).

threshold # freq. sets med. ε 11th worst ε
25 264,401 0.17 0.38
24 512,258 0.22 0.41
23 1,009,016 0.27 0.51
22 1,988,294 0.28 0.57
21 3,827,797 0.29 0.55
20 7,074,945 0.31 0.61
19 12,264,238 0.21 0.54
18 19,351,987 0.2 0.43
17 26,724,911 0.13 0.31
16 31,850,954 0.13 0.29

Table 1.

Turning to the accuracy we observed that the average rel-
ative approximation quality did not exceed 36%. In fact this
quantity was smaller for most frequency thresholds. See Ta-
ble 1 for a list of all frequent itemset numbers and the me-
dian of achieved approximation ratios, which are measured
with their absolute difference to 1. Moreover, discarding
the ten worst results for each series, we see that the worst
remaining run still provides meaningful estimations (right-
most column).

Summing up we can say: For cases in which the cost
of frequency counting is dominated by the number of fre-
quent itemsets straightforward randomized counting pro-
duces reasonable approximations in a fraction of the time
needed for exhaustive enumeration.

5. Conclusion

We discussed a challenge to pattern mining posed by ap-
plications that require a huge mining output. Such appli-
cations can for instance be found in classification tasks of
large scientific datasets but are also likely to occur in other
situations where there is a subsequent machine process-
ing. Since in this situation the lack of intelligence of cur-
rent mining algorithms cannot be compensated by trial-and-
error parameter setting, quick parameter evaluation proce-
dures are needed. These are algorithms that can compute
quantities about the shape and size of a pattern mining’s re-
sult set in a time independent of the size of this set. This
independence of the output size points towards sampling
techniques as possible solutions.

We gave an example implementation of the Markov
chain Monte Carlo method for counting the number of fre-
quent itemsets. It produces promising results in the arti-
ficial environment of datasets generated uniformly at ran-
dom. However, the approach has two major flaws: The

2For the MC algorithm the average time is listed.

mixing time of the used Markov chain has no good bounds
for the general case, and the computation requires an often
repeated counting of frequencies. Both can easily lead to
infeasible setup times for huge real-world datasets.

We did not yet touch the majority of other parameters
that come up in the more advanced mining tasks. Find-
ing efficient evaluation procedures for them is an interest-
ing and wide open challenge. Also the combination of two
or more parameters is likely to introduce a lot of extra diffi-
culty to the task.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances
in Knowledge Discovery and Data Mining, pages 307–328.
AAAI/MIT Press, 1996.

[2] M. Boley. On approximating minimum infrequent and
maximum frequent sets. In Proceedings of the Tenth In-
ternational Conference on Discovery Science (to appear).
Springer, 2007.

[3] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discrimina-
tive frequent pattern analysis for effective classification. In
ICDE, pages 716–725, 2007.

[4] M. Deshpande, M. Kuramochi, and G. Karypis. Fre-
quent sub-structure-based approaches for classifying chem-
ical compounds. In ICDM, pages 35–42, 2003.

[5] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivo-
nen, and R. S. Sharm. Discovering all most specific sen-
tences. ACM Trans. Database Syst., 28(2):140–174, 2003.

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[7] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels
for predictive graph mining. In Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, page 158167. ACM Press, New York,
2004.

[8] M. Jerrum and A. Sinclair. The markov chain monte carlo
method: An approach to approximate counting and integra-
tion. In D. Hochbaum, editor, Approximation Algorithms for
NP-hard Problems, pages 482–520. PWS Publishing, 1997.

[9] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On
generating all maximal independent sets. Inf. Process. Lett.,
27(3):119–123, 1988.

[10] R. D. King, A. Srinivasan, and L. Dehaspe. Warmr: a data
mining tool for chemical data. Journal of Computer-Aided
Molecular Design, 15(2):173–181, 2001.

[11] D. Randall. Rapidly mixing markov chains with applications
in computer science and physics. Computing in Science and
Engineering, 8(2):30–41, 2006.

[12] L. G. Valiant. The complexity of computing the permanent.
Theor. Comput. Sci., 8:189–201, 1979.

[13] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

[14] G. Yang. Computational aspects of mining maximal fre-
quent patterns. Theor. Comput. Sci., 362(1-3):63–85, 2006.

