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1 Introduction

During the last decade, biomedical researchers gained access to the entire human genome, reliable high-throughput
biotechnologies, and affordable computational resources and network access. In combination, these new tools created
a new model for biomedical research that no longer uses computational tools merely to monitor research, but instead
exploits these tools to acquire knowledge and make discoveries. Consider a simplified Web of three publicly accessible
resources Entrez Gene, OMIM and PubMed, in Figure 1. Data entries in each resource are annotated with terms from
multiple controlled vocabularies (CVs). The hyperlinks between data entries in any two resources form a relationship
between the two resources and is represented by a (virtual) link. Thus, an entry in Entrez Gene, annotated with GO
terms, can have hyperlinks to multiple entries in PubMed that are annotated with MeSH terms.Similarly, OMIM entries,
annotated with terms from SNOMED CT may have hyperlinks to entries in Entrez Gene and PubMed. This forms a rich
Web of annotated data entries. Our objective in this research is to develop tools to discover meaningful patterns across
resources and ontologies. As a first stage in teasing out patterns, we execute a protocol to follow hyperlinks, extract
annotations, and generate LSLink datasets. We then mine the term-links of the LSLink datasets to find potentially
meaningful associations. Biologically meaningful associations of pairs of CV terms may yield actionable nuggets of
previously unknown knowledge. Moreover, the bridge of associations across CV terms will reflect the practice of how
scientists annotate data across hyperlinked repositories.

2 Methodology

2.1 LSLink Datasets

We identify a background dataset associated with a specific experiment protocol. It represents a broad and represen-
tative sample of data entries, hyperlinks and annotations. An LSLink dataset is a collection of term-links. Figure 2
illustrates 3 sample hyperlinks between 2 Entrez Gene and 2 PubMed entries. The hyperlinks are between entries e1

and p1, e2 and p1, and e2 and p2. The terms ga, gb, gc and ma, mb, mc, md annotate these entries. Each entry is
associated with two terms. If we consider the hyperlink between e1 and p1, the two CV terms ga and gb annotating

Figure 1: Web of Entrez Gene, OMIM and PubMed Resources
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Figure 2: Sample hyperlinks between Entrez Gene and PubMed

Number of active human gene records in Entrez Gene 38,529
Number of GO annotations extracted 116,513
Number of distinct GO terms extracted 6,177
Number of distinct PubMed records which are reached via four link types 143,450
Number of distinct MeSH descriptors that are major topics 11,419
Number of term-links generated 13,770,651
Number of distinct associations between pairs of CV terms (GO and MeSH pairs) 1,855,992

Table 1: Background LSLink dataset of human genes and publications

e1, and the two CV terms ma and mb annotating p1, then we can generate four term-links. An example term-link is
the following: (ga,mc,e2, p2) = (DNA repair,Mitosis,675,10749118). These 3 hyperlinks from Figure 2 generate 12
term-links. Note that both hyperlinked data entries must be annotated in order to generate a term-link.

Consider a background LSLink dataset that includes all term-links generated from the human gene records in
Entrez Gene with GO annotations that have hyperlinks to publications in PubMed with MeSH annotations. We limit our
protocol to only generate term-links for the MeSH terms identified as major topic headings in the PubMed publications.
The statistics for this background dataset as of May 31st, 2007 is reported in Table 1. Details of the specific experiment
protocol to generate this background LSLink dataset is in [12].

2.2 Relevant Metrics

We propose two classes of metrics to identify significant associations of pairs of CV terms. The first class is based on
the logarithm of the odds (LOD) ratio [4, 11, 20] and the second class on the hypergeometric distribution [21, 22].

Notation

• (G,M,E,P) is the background dataset of term-links between entries in Entrez Gene E annotated with terms G
from GO that have hyperlinks to entries in PubMed P annotated with terms M from MeSH. #(G,M,E,P) is the
cardinality of the term-links in (G,M,E,P). (G,M,E′,P′) and #(G,M,E′,P′) correspond to the user dataset, a
subset of the background dataset that is of interest to a scientist.

• #(gu∧mw,E,P) is the cardinality of term-links containing the pair of terms gu and mw in the background dataset.

• #(gu∨mw,E,P) is the cardinality of term-links containing either term gu or term mw in the background dataset.

LOD Confidence and LOD Support
The metrics based on the LOD ratio are a measure of the extent to which a specific association of CV terms

deviates from one resulting from chance alone (a random association). A random association is one where each data
entry in the background dataset is equally likely to be annotated with a particular CV term, and any pair of entries is
equally likely to have a hyperlink occurring between them. Using the well known association rule approach [1, 2, 9],
we define LOD based confidence and support. The LOD confidence and LOD support metrics that we use include
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a term-freq correction based on the logarithm of the odds (LOD) measure to account for the term frequencies of the
associated terms in the background dataset. This term-freq correction is novel to our work. We note that given the
universe of CV terms and annotations, data entries and hyperlinks between data entries, and term-links, there are
many possible approaches to obtain expressions for LOD support and confidence. We have used our judgement to
pick some reasonable choices.

• Term probability reflects how commonly a CV term is used to annotate a data entry. Term probability may be
estimated using annotation level term frequencies, i.e., by counting up the total number of annotations in some
background dataset (annotation level). Alternately, it can be estimated using the cardinality of data entries that are
annotated in the background dataset (data entry level). We chose to calculate term probability at the annotation
level.

– Pr term(gu,E) = number o f annotations that are gu in E
total number o f annotations in E

– Pr term(mw,P) = number o f annotations that are mw in P
total number o f annotations in P

• Link annotation probability for the pair (gu, mw) estimated from the user query dataset:

– Pr link(gu,mw,E′,P′) = #(gu∧mw,E′,P′)
#(G,M,E′,P′)

• Conditional link annotation probability for the pair (gu, mw) in the user query dataset:

– Pr cond(gu,mw,E′,P′) = #(gu∧mw,E′,P′)
#(gu∨mw,E′,P′)

• LOD support equals to the logarithm of the link annotation probability divided by the corresponding term proba-
bilities:

– LODSupport(gu,mw,E′,P′) = log( Pr link(gu,mw,E′,P′)
Pr term(gu,E)Pr term(mw,P) )

• LOD confidence equals to the logarithm of the conditional link annotation probability, given the appearance of
either CV term, divided by the corresponding term probabilities:

– LODCon f(gu,mw,E′,P′) = log( Pr cond(gu,mw,E′,P′)
Pr term(gu,E)Pr term(mw,P) )

Hypergeometric Distribution and the P−value
The hypergeometric distribution (HG) describes the discrete probability of selecting particular associations of CV

terms (gu, mw) from a background dataset when sampling items without replacement. The HG distribution gives a
quantification of the level of one’s surprise at finding over-representation for a particular item in a given sample of size
k drawn from a larger population of size n [6]. The P-value of the HG distribution, when applied to our problem, will
provide the expectation of picking at least r term-links annotated with the CV term pair (gu, mw), when picking exactly k
term-links to create a user query dataset.

Consider a background dataset of n = #(G,M,E,P) term-links generated from the hyperlinks between data re-
source E and P annotated with G and M. There are s= #(gu∧mw,E,P) term-links containing the specific pair of CV
terms (gu, mw) in the background dataset. We then consider a user query dataset of k = #(G,M,E′,P′) term-links
which is a subset of the background dataset. An observation of a term-link with this particular pair of CV terms (gu,mw)
in the user query dataset is defined to be a success.

• The HG distribution probability and P-value to observe r occurrences of term-links containing the pair (gu, mw),
given n, s and k, are as follows:

– Pr(r|n,s,k) = (s
r)(n−s

k−r)
(n

k)

– P-value = ∑min(s,k)
q=r Pr(q|n,s,k)

The smaller the P-value for the observed r , in the user query dataset, the greater the over-representation of term-
links representing an association between the pair of CV terms (gu,mw).
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2.3 User Dataset and Significant and Meaningful Associations

From the background LSLink dataset, we consider a simple user query dataset. A user query dataset is a subset
of the background LSLink dataset that is of interest to a scientist. Here our user query subset are all the term-links
associated with an Entrez Gene entry for some gene of interest, e.g., BRCA1/BRCA2 or CFTR. (Complex queries such
as gene families will be evaluated in our project.) There can be a potentially large number of possible associations
even for a single gene. For example, for BRCA1/BRCA2, there were 81,428 term-links and they represented 12,296
distinct associations between pairs of CV terms! Using the LOD confidence and LOD support metrics, one can rank
these pairs of associations of CV terms and identify the Top 25 potentially significant pairs for each gene. Experts
rated the associations of pairs of CV terms along two independent dimensions, as follows: (Meaningful, Maybe
Meaningful, Not Meaningful), and (Widely Known, Somewhat Known, Unknown/Surprising). A majority of
the Top 25 pairs of associations for each gene were identified as meaningful or possibly meaningful and widely known or
somewhat known (a true positive). Several of the pairs were unknown and might lead to new knowledge. For example,
for BRCA1/BRCA2, the association of the GO term negative regulation of centriole replication with the
MeSH term Fallopian Tube Neoplasms (Neoplastic Process) might be interesting, because it indicates that
the tumor and the negative regulation might have a causal relationship [7]. For CFTR, the association of the GO term
ATP-binding and phosphorylation-dependent chloride channel activity and the MeSH term Fimbriae
Proteins was also found to be interesting since this is a previously unknown activity of these proteins [18]. The
background dataset of term-links from this preliminary study and the potential associations among pairs of GO and
MeSH terms are available at the following site: http://www.cbcb.umd.edu/research/lslink/lodgui/

3 Research Directions

3.1 Learning Associations from Indirect Links or Paths

Figure 2 illustrates how a hyperlink between two data entries generates a set of term-links. Such hyperlinks are direct
links in that there are no intermediate data entries between the pair of annotated data entries of interest. A generaliza-
tion is to consider indirect links between objects. Indirect links are interesting to consider for data entry pairs that are
not directly linked. As an example, there is no direct hyperlink from human gene BRCA1 (GeneID:672) in Entrez Gene
to document PMID:17081976 in PubMed. However the two are indirectly related via an OMIM entry. BRCA1 points to
OMIM record MIM:113705 which in turn points to Pubmed record PMID:17081976. In this example the length of the
path, defined as the number of hyperlinks that are traversed to connect the two data entries of interest, is 2.

While we believe that such indirect paths may also yield interesting term-links, we are likely to be less confident in
these term-links as compared to the term-links generated from a direct (often curated) hyperlink between data entries,
where the path length is 1. We may also consider confidence in the coverage provided by a particular path between two
resources. For example, suppose we observe that 60% of the genes in Entrez Gene that have a path to a publication
in PubMed via OMIM also have a direct link from Entrez Gene to Pubmed. Then, this 60% coverage can represent a
confidence score in any of these term-links generated from this path Entrez Gene to OMIM to PubMed, compared to
the term-links from a direct hyperlink from Entrez Gene to Pubmed. We note that determining and combining such path
length and confidence corrections may be non-trivial.

3.2 Learning Associations from Retrieval Links

Another dimension for research is the use of retrieval links in augmenting the term-links from hyperlinked data entries.
While a given gene object in Entrez Gene may have several hyperlinks to PubMed documents, these hyperlinks may be
incomplete in their capability to identify a comprehensive pool of relevant documents. Consider that hyperlinks between
Entrez Gene and PubMed are often created by manual, labor intensive protocols that involve intellectual effort. Thus,
there may be a significant time lag before these hyperlinks are created. In this interval, many documents that are
relevant to a gene may be missed. This could significantly limit our set of interesting term-links and hence interesting
association between CV terms.

We will explore methods to augment the pool of hyperlinks with retrieval links. We will explore retrieval links specif-
ically in the context of term-links between gene entries and PubMed documents. Retrieval links are supported by our
prior research on GeneDocs [8]. GeneDocs is a MEDLINE document ranking system system that targets retrieval for
gene queries. GeneDocs takes as input an Entrez Gene id, or a gene symbol. It ranks the retrieved results using its
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MeSH descriptor w/ major topic Number of associated GO terms

Candidiasis, Cutaneous (Disease or Syndrome) 5
Central Nervous System Infections (Disease or Syndrome) 5
Hyperlipoproteinemia Type V (Disease or Syndrome) 5
Tinea Versicolor (Disease or Syndrome) 5
Akathisia, Drug-Induced (Disease or Syndrome) 3
Hyperlipoproteinemia Type III (Disease or Syndrome) 3
Dyslipidemias (Disease or Syndrome) 2
Hyperlipoproteinemia Type IV (Disease or Syndrome) 2
Hyperlipoproteinemias (Disease or Syndrome) 2
Optic Neuritis (Disease or Syndrome) 2
Vitamin K Deficiency (Disease or Syndrome) 2

MeSH descriptor w/ major topic GO term Number of term-links

Hyperlipoproteinemia Type V (Disease or Syndrome) apolipoprotein E receptor binding 1
Hyperlipoproteinemia Type V (Disease or Syndrome) regulation of axon extension 1
Hyperlipoproteinemia Type V (Disease or Syndrome) response to reactive oxygen species 1
Hyperlipoproteinemia Type V (Disease or Syndrome) tau protein binding 1
Hyperlipoproteinemia Type V (Disease or Syndrome) vasodilation 1

Table 2: Frequency Analysis of MeSH to GO associations for gene APOE.

ranking logic; the user is also given the option to use relevance feedback. The web based system is available at the
following site:
http://sulu.info-science.uiowa.edu/genedocs/.

GeneDocs considers gene name synonyms that have been harvested from several sources including Entrez Gene
and SwissProt. It also handles the three major varieties of name ambiguity quite successfully. The effectiveness of
GeneDocs, especially in dealing with name ambiguity, is shown in [15]. GeneDocs is also based on our prior research
on ranking strategies [16, 17].

GeneDocs ranks retrieved documents with a relevance rating in the range (0,1]. We will incorporate the GeneDocs
score as a retrieval rating confidence score and use this as an additional correction in determining LOD support and
LOD confidence. We note that if there is a direct hyperlink to a retrieved document, then the term-links that are obtained
will automatically be given the highest rank of 1.

3.3 Tools to Determine Patterns of Annotation

Controlled vocabularies and ontologies are designed to annotate specific classes of objects, e.g., genes, diseases,
drugs, etc. They typically have distinct and independent orientations, governing bodies, histories and application strate-
gies. Our research will identify significant associations between pairs of CV terms, or an association bridge, and may
offer users a unique opportunity to identify and perhaps explain patterns in annotation practice. We note that this re-
search complements a growing body of research exploring annotation practices within a single ontology [10, 5, 26, 19],
as well as research in ontology alignment, matching and integration [3, 14, 23, 24]. Due to space limitations we do not
review this literature.

We motivate finding patterns in the cross ontology bridge of associations using a simple example. Suppose we
consider a user query dataset for the APOE gene and the most significant associations among MeSH and GO terms.
We can perform a frequency analysis on the MeSH terms and identify how many GO terms were associated with each
MeSH term. Next, for each of the (MeSH, GO) associations, we can report on the number of term-links from the user
query dataset. (We note that we can also report on the LOD support or LOD confidence or the P−value of the HG
metric.) The frequency analysis for a subset of the APOE dataset is in Table 2.

We note that such a frequency analysis, while interesting, only provides partial insight into any patterns in the bridge
of associations across ontologies. An extension is to consider a bi-partite graph where the nodes are the set of GO
terms and the set of MeSH terms. There will be an edge in the graph if there is a (significant) association between the
corresponding pair of CV terms - this forms the bridge of associations. Users can customize the bridge by choosing
a user query dataset and further selecting a threshold on any of the statistics defined for the association between the
corresponding pair of CV terms, e.g., the number of term-links, LOD support or LOD confidence or the P−value of the
HG metric. Users may also be interested in specific patterns, e.g, a fully connected component between some N GO
terms and M MeSH terms.

Our objective is to abstract useful properties and features for inclusion in our tool to better understand the bridge
of associations. A good starting point would be simple properties such as clustering coefficients and node degree
distributions. We could also provide features to identify components and other patterns as a basis for identifying regions
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of strong connections in the association bridge across the CVs. Node characteristics such as betweenness centrality
[13] might offer an interesting approach to identify important nodes (important CV terms) in the bi-partite graph.

By focusing on the association bridge at the level of independent associations between pairs of CV terms, we
are able to simplify the problem of finding patterns. However, we are ignoring key information. The two sets of CV
terms participating in the association bridge typically come from ontologies or structured vocabularies. By ignoring their
structural properties, we may be loosing valuable insight. Thus, we plan to explore a second level of more advanced
functions that reflect these properties. For example, we can use the ontology structure to create CV superterms and
thereby aggregate associations in the bridge. CV superterms are associated with the roots of subtrees in the ontology.
Subtrees may be selected in different ways. We can also use the class sub-class relationship in the ontology structure
to augment associations in the bridge.

4 Conclusion

Our research focus is to identify biologically meaningful and statistically significant associations in the biological Web.
We develop multiple metrics to identify potentially significant associations between pairs of CV terms. We will develop
a suite of tools for the exploration and evaluation of the LSLink datasets, to identify patterns of annotation practice, and
to target potentially meaningful associations.
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