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Abstract

Analysis of privacy-sensitive data in a multi-party en-
vironment often assumes that the parties are well-behaved
and they abide by the protocols. Parties compute what-
ever is needed, communicate correctly following the rules,
and do not collude with other parties for exposing third
party sensitive data. This paper argues that most of these
assumptions fall apart in real-life applications of privacy-
preserving distributed data mining (PPDM). It offers a more
realistic formulation of the PPDM problem as a multi-party
game where each party tries to maximize its own objec-
tives. The paper uses this game-theoretic framework for
doing equilibrium-analyses of existing PPDM algorithms.
It then modifies these algorithms using the concept of mech-
anism design and shows how introduction of penalty forces
dishonest rational participants to follow the protocol. Itil-
lustrates this using the secure sum computation protocol.
Finally, this paper discusses the open questions in this work
and future research directions.

1. Introduction

Advanced analysis of multi-party privacy-sensitive data
plays an important role in many cross-domain applications
that require large-scale information integration. The data
mining community has responded to this challenge by de-
veloping a new breed of distributed data mining algorithms
that are privacy preserving. These algorithms attempt to
analyze multi-party data for detecting underlying patterns
without necessarily divulging the raw privacy-sensitive data
to any of the parties. However, most of these privacy pre-
serving data mining algorithms make assumptions regard-
ing the behavior of participating entities, such as, they al-
ways follow the protocol and never not try to collude or
sabotage the process. These kind of assumptions fall apart
in real life. For example, let us consider the US Department

of Homeland Security funded PURSUIT project1 for pri-
vacy preserving distributed data integration and analysisof
network traffic data from different organizations. The goal
here is to detect “macroscopic” patterns from network traf-
fic of different organizations for revealing common threats
against those organizations. However, participating entities
in a consortium like PURSUIT may not all be ideal. Some
may decide to behave like a “leach”—exploit the benefit
of the system without contributing much. Some may try
to collude with other parties for exposing the private data
of a party. In this paper we suggest an alternate perspec-
tive for privacy preserving data mining by relaxing some of
the existing assumptions. We model large-scale multi-party
privacy preserving data mining as a game where each par-
ticipant (player) tries to maximize its benefit or utility score
by optimally choosing the strategies during the execution
of the protocol. Modeling using game theory only helps
us to analyze the nature of the data mining algorithm. So,
to make the participants behave in a desired manner, we use
mechanism design to modify existing privacy preserving al-
gorithms to introduce incentive or penalty-based schemes.
We show in our analysis that these algorithms work better
to achieve the desired goal and are more robust to partici-
pant behavior. We illustrate this using the secure sum com-
putation protocol [3]. We modify the standard secure sum
algorithm by incorporating an asynchronous distributed pe-
nalizing scheme. We analyze the equilibrium states of both
versions of the algorithm and show that the semi-honest as-
sumption of the standard secure sum protocol is suboptimal
whereas the modified algorithm gives optimal performance.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses some key concepts of game theory and then
reviews applications of game theory in privacy and security.
Section 3 describes multi-party PPDM from a game theo-
retic perspective. Section 4 illustrates the framework using
multi-party secure sum computation as an example. Sec-

1http://www.agnik.com/DHSSBIR.html



tion 5 gives the optimal solution using a distributed penalty
function mechanism. Section 6 presents the experimental
results. Finally, Section 7 concludes this paper with a dis-
cussion on future directions of research.

2. Background and Related Work

Application of game theory to privacy and security is a
relatively new area of research. In this section we review
some existing work in this area. Before that we discuss
some key concepts in game theory.

A game is an interaction or a series of interactions be-
tween players, which assumes that 1) the players pursue
well defined objectives (they arerational) and 2) they take
into account their knowledge or expectations of other play-
ers’ behavior (theyreason strategically).

Definition 2.1 (Strategic Game)A strategic game con-
sists of (i) a finite setP : the set of players, (ii) for each
player i ∈ P a nonempty setAi: the set of actions avail-
able to playeri, and (iii) for each playeri ∈ P a prefer-
ence relation�i on A = ×j∈P Aj : the preference relation
of playeri.

The preference relation�i of player i can be specified
by a utility functionui : A → R (also called a payoff func-
tion), in the sense that for anya ∈ A, b ∈ A, ui(a) ≥ ui(b)
whenevera �i b. The values of such a function is usually
referred to as utilities (or payoffs). Herea or b is called
theaction profile, which consists of a set of actions, one for
each player. Therefore, the utility (or payoff) of playeri

depends not only on the action chosen by herself, but also
the actions chosen by all the other players. Mathemati-
cally, for any action profilea ∈ A, let ai be the action
chosen by playeri and a−i be the list of actions chosen
by all the other players excepti, the utility of playeri is
ui(a) = ui({ai, a−i}).

One of the fundamental concepts in game theory is the
Nash equilibrium:

Definition 2.2 (Nash Equilibrium) A Nash equilibrium of
a strategic game is an action profilea∗ ∈ A such that for
every playeri ∈ P we have

ui({a
∗

i , a
∗

−i}) ≥ ui({ai, a
∗

−i}) for all ai ∈ Ai.

Therefore, Nash equilibrium defines a set of actions (an
action profile) that captures a steady state of the game in
which no player can do better by unilaterally changing her
action (while all other players do not change their actions).

When the game involves a sequence of interactive ac-
tions of the players, and each player can consider her plan
of action whenever she has to make a decision, thestrate-
gic gamebecomes anextensive game. In that situation, the
actionai for playeri, is replaced byσi, thestrategyfor that
player, which is a complete algorithm for playing the game,

implicitly including all actions of that player for every pos-
sible situation throughout the game. The utility function
also assigns a payoff to playeri for each joint strategies of
all the players,i.e., ui({σi, σ−i}).

Halpern and Teague [5] considered the problem of se-
cret sharing and multiparty computation among rational
agents. Abraham et al. [1] introduced thek-resilient Nash
equilibrium and offered ak-resilient algorithm for solving
Shamir’s secret sharing [11] problem. Kunreuther et al. [9]
and Kearns et al. [8] proposed a practical security problem
called theInterdependent Security (IDS)in airline compa-
nies and proposed a game theory-based solution. Dalvi et al.
[4] looked at classification applications as a game between
the classifier and the malicious user trying to produce false
negatives and developed algorithms for an optimal classifier
given the optimal strategies of the attacker. More recently,
Agarwal et al. [2] addressed the generalized problem of
honestinformation sharing where the idea is to make sure
that all the entities get to know only thecorrectresult of the
query without any additional information. The authors pro-
pose a centralized auditing device whose task is to penalize
entities if they are caught deviating. Jiang et al. [6] provide
an alternative solution to the traditional semi-honest adver-
sary model by proposing an accountable computing frame-
work in which malicious nodes can be detected in polyno-
mial time.

3 Multi-Party PPDM as Games

In a multi-party PPDM environment, each party has cer-
tain responsibilities in terms of performing their part of the
computations, communicating correct values to other nodes
and protecting the privacy of the data. Depending on the
characteristics of these entities and their objectives, they ei-
ther perform their duties or not. Sometimes, they even col-
lude with others to reveal others’ private information. Let
σi = (Mi, Ri, Si, Gi) be the strategy that party (node)i

adapts in terms of computation (Mi), communication (re-
ceive ((Ri) and send (Si)), and collusion (Gi)with a group
of Gi nodes in the network. Further letci,m(Mi) be the util-
ity of performingMi, and similarly we can defineci,r(Ri),
ci,s(Si) andci,g(Gi). Then the overall utility of nodei will
be a linear or nonlinear function of utilities obtained by the
choice of strategies in the respective dimensions of compu-
tation, communication and collusion. Without loss of gen-
erality, we consider an utility function which is a weighted
linear combination of all of the above dimensions:

ui({σi, σ−i}) = wi,mci,m(Mi) + wi,rci,r(Ri)

+wi,sci,s(Si) + wi,gci,g(Gi),

wherewi,m, wi,r, wi,s, wi,g represent the how important the
specific action is for the node to determine its strategy. In
the next section, we would illustrate our formalizations us-



ing one of the most popular PPDM algorithms, the secure
sum computation.

4 Case Study: Multi-Party Secure Sum Com-
putation

Secure Sum ComputationSuppose there aren individ-
ual sites, each with a valuevj , j = 1, 2, . . . , n. It is known
that the sumv =

∑n

j=1
vj (to be computed) takes an integer

value in the range0, 1, . . . , N −1. We want to compute this
sum following the secure computation protocol described in
[10, 3].
Collusion AnalysisThe secure sum computation algorithm
assumes semi-honest parties who are only interested in the
end result and do not indulge in collusion. Since this as-
sumption is not practical, Let us assume that there arek

(k ≥ 2) nodes acting together secretly to achieve a fraudu-
lent purpose. Letvi be an honest node who is worried about
her privacy. We also usevi to denote the value in that node.
Let vi−1 be the immediate predecessor ofvi andvi+1 be the
immediate successor ofvi. The possible collusion that can
arise are:

• If k = n − 1, then the exact value ofvi will be dis-
closed.

• If k ≥ 2 and the colluding nodes include bothvi−1 and
vi+1, then the exact value ofvi will be disclosed.

• If n − 1 > k ≥ 2 and the colluding nodes contain
neithervi−1 nor vi+1, or only one of them, thenvi is
disguised byn − k − 1 other nodes’ values.

The first two cases need no explanation. Now let us in-
vestigate the third case. Without loss of generality, we can
arrange the nodes in an order such thatv1v2 . . . vn−k−1 are
the honest sites,vi is the node whose privacy is at stake and
vi+1 . . . vi+k form the colluding group. We have

n−k−1X

j=1

vj

| {z }

denoted by X

+ vi
|{z}

denoted by Y

= v −

i+kX

j=i+1

vj

| {z }

denoted by W

,

whereW is a constant and is known to all the colluding
nodes. Now, it is clear that the colluding nodes will know
vi is not greater thanW , which is some extra information
contributing to the utility of the collusions. To take a fur-
ther look, the colluding nodes can compute the posteriori
probability ofvi and further use that to launch a maximum
a posteriori probability (MAP) estimate-based attack. It can
be shown that, this posteriori probability is:

fposterior(vi) =
1

(m + 1)(n−k−1)
×

rX

j=0

(−1)jC
(n−k−1)
j

×C
(r−j)(m+1)+t

(n−k−1)+(r−j)(m+1)+t−1
,

where vi ≤ W , r = ⌊W−vi

m+1
⌋ and t = W − vi −

⌊W−vi

m+1
⌋(m + 1). Whenvi > W , fposterior(vi) = 0. Due

to space constraints, we have not included the proof of this
result here. Interested readers can find a detailed proof in
[7].

Note that, when computing this posteriori probability, we
model the colluding nodes’ belief of each unknownvj (j =
1, . . . , n − k − 1) as a uniform distribution over an interval
{0, 1, . . . ,m}. This assumption has its roots in the principle
of maximum entropy, which models all that is known and
assumes nothing about what is unknown, in that case, the
only reasonable distribution would be uniform.
Overall Utilities The derived posteriori probability can be
used to quantify the utility of collusion,e.g., g(vi) =
Posteriori− Prior = fposterior(vi)−

1

m+1
. We see here

that this utility depends onW − vi and the size of the col-
luding groupk. Now we can put together the overall utility
function for the game of multi-party secure sum computa-
tion:

ui({σi, σ−i}) = wi,mci,m(Mi) + wi,rci,r(Ri)

+wi,sci,s(Si) + wi,g

X

j∈P−Gi

g(vj),

whereP is the set of all nodes andGi is the set of nodes
colluding with nodei.

Let us now consider a special instance of the over-
all utility where the node performs all the communica-
tion and computation related activities as required by the
protocol. This results in a function:ui({σi, σ−i}) =
wi,g

∑
j∈P−Gi

g(vj), where the utilities due to communi-
cation and computation are constant and hence can be ne-
glected for determining the nature of the function. Figure
1 shows a plot of the overall utility of multi-party secure
sum as a function of the distribution of the random variable
W − vi and the size of the colluding groupk. It shows that
the utility is maximum for a value ofk that is greater than
1. Since the strategies opted by the nodes are dominant,
the optimal solution corresponds to the Nash equilibrium.
This implies that in a realistic scenario for multi-party se-
cure sum computation, nodes will have a tendency to col-
lude. Therefore the non-collusion (k = 1) assumption of
the classical secure multi-party sum is sub-optimal. The
next section describes a new mechanism that leads to an
equilibrium state corresponding to no collusion.

5 Achieving Nash Equilibrium with No Col-
luding Nodes

To achieve a Nash equilibrium with no collusions, the
game players can adopt a punishment strategy to threaten
potential deviators. One may design a mechanism to penal-
ize colluding nodes in a number of ways:
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Figure 1. Overall utility for classical secure sum
computation. The optimal strategy takes a value of
k > 1

0

20

40

60 1 2 3 4 5 6

75

80

85

90

95

100

105

Size of colluding group (k)Random variable (x)

U
til

ity
 fu

nc
tio

n 
f(

x)

Figure 2. Overall utility for secure sum computation
with punishment strategy. The optimal strategy takes
a value ofk = 1.

1. Policy I: Remove the node from the application en-
vironment because of protocol violation. Although it
may work in some cases, the penalty may be too harsh
since usually the goal is to have everyone participate in
the process and faithfully contribute to the data mining
process.

2. Policy II: Introduce a general penalizing scheme based
on one’s belief about whether there are violators. This
policy does not try to identify violators, but tries to
bring down the overall utility of the system, thereby re-
lying on the rational behavior of the players to change
for good in the lack of any advantage. Letk′ (an es-
timate of k, actual number of dishonest nodes) be the
estimate of threat to the system. Then for policy II, the
modified utility function is given bỹui({σi, σ−i}) =
ui({σi, σ−i})−∗αk′, whereα > 0 The last term in the
equation accounts for the penalty imposed by the hon-
est nodes. Obviously such a penalizing scheme works
for repeated games, where bad nodes turn good in suc-
cessive rounds of the game.

Figure 2 shows a plot of the modified utility function for
secure sum with policy II. It shows that the globally optimal
strategies are all fork = 1. The strategies that adopt collu-
sion always offer a sub-optimal solutions which would lead
to moving the global optimum to the case wherek = 1.

As an illustrative example, consider a three-party secure
sum computation with the payoff listed in Table 1. When
there is no penalty, all the scenarios with two bad nodes and
one good node offer the highest payoff for the colluding bad
nodes. So the Nash equilibrium in the classical secure sum
computation is the scenario where the participating nodes

A B C Payoff Payoff Payoff
(No Penalty) (Policy I) (Policy II)

Good Good Good (3, 3, 3) (3, 3, 3) (3, 3, 3)
Good Good Bad (3, 3, 3) (2, 2, 0) (2, 2, 2)
Good Bad Bad (3, 4, 4) (0, 0, 0) (2, 2, 2)
Bad Bad Bad (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 1. Payoff table for three-party secure sum com-
putation.

are likely to collude. However, in both cases with penalty,
no node can gain anything better by deviating from good to
bad when all others remain good. Therefore, the equilib-
rium corresponds to the strategy where none of the nodes
collude. Note that, the three-party collusion is not very rel-
evant in secure sum computation since there are all together
three parties and there is always a good node (the initiator)
who wants to only know the sum.

Implementing the Penalty Mechanism without Having
to Detect Collusion: In order to implement the penalizing
protocol, one may use a central mediator who can monitor
the behavior of all nodes (see,e.g., [2]). However, it re-
quires a a trusted central authority and global synchroniza-
tion which might create a bottleneck in a distributed sys-
tem. Instead, an asynchronous distributed control. can be
realized bycheap talk, a pre-play communication concept
from game theory. The idea is based on the assumption that
collusion requires consent from multiple parties. So a party
with intention of collusion might get caught while sending
out collusion invitation randomly in the network if those in-
vitations reach some honest parties. The new protocol will
therefore have a pre-play phase where “lobbying agents”
(well-behaved nodes or advocacy groups) will make partic-
ipants aware of the fact that one will be penalized if any
collusion is detected. This “lobbying” does not affect the
utility function. It simply makes everyone aware of that.It
does not require a perfect collusion detection.A real threat
with an estimated high-enough value of the collusion-size
(k′) will push everyone toward proper behavior.

Secure Sum with PenaltyWe propose a secure sum
with penalty (SSP) protocol that achieves no collusion.
Consider a network ofn nodes where a node can either be
good (honest) orbad (colluding). Before the secure sum
protocol starts, during cheap talk, the good nodes set their
estimate of bad nodes in the networkk′ = 0 and bad nodes
send invitations for collusions randomly to nodes in the net-
work. Every time a good node receives such an invitation,
it increments its estimate ofk′. Bad nodes respond to such
collusion invitations and form collusions. If a bad node
does not receive any response, it behaves as a good node.
To penalize nodes that collude, good nodes split their local
data intoαk′ random shares and in every round they send
only one of theirαk′ shares. Therefore, each sum computa-
tion consists ofO(αk′) rounds of communication for every
complete sum computation.
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6 Experimental Results

We empirically verify our claim that the SSP protocol
leads to an equilibrium state where there is no collusion.
The utility function used for the experiments is the one de-
scribed in Policy II. The penalty in this case is the excess
amount of communication and computation needed. In the
first experiment we demonstrate for different sizes of the
network (500 nodes and 1000 nodes) that the utility is max-
imum when the collusion is minimum (Figure 3). The max-
imum utility in the figure corresponds to the classical secure
sum computation without collusion. In our second experi-
ment we verify that the number of bad nodes decreases with
successive rounds of SSP (See Figure 4). Each bad node
has a random utility threshold that is assigned during the
setup. If the computed utility falls below a node’s thresh-
old, the node decides to change its strategy and becomes
a good node for the subsequent rounds. The time taken to
have a no collusion scenario depends on the initial number
of bad nodes in the network, which indirectly decides the
estimate ofk′.

7 Conclusions

This paper questions some of the common assumptions
in multi-party PPDM and shows that if nobody is penalized
for cheating, rational participants tends to behave dishon-
estly. This paper takes a game-theoretic approach to analyze
this phenomenon and presents Nash equilibrium analysis
of the well-known multi-party secure sum computation. A
cheap-talk based mechanism design to implement a penalty
is proposed to offer a more robust protocol that does not rely
on semi-honest behavior of the participants.

A number of questions, however, yet remain to be an-
swered. The nature of the optimization function reveals that
there is an optimum utility of the function for a certain size
of the colluding group. A maximization of the objective

function to estimate k’ might be able to provide interesting
results in terms of the convergence time of the algorithm.
Also, the current analysis assumes a homogeneous system
where all players attach the same importance to the differ-
ent costs. Studying a heterogeneous scenario would give us
a better insight about the performance of the SSP algorithm.
In the current version of the SSP algorithm the amount of
penalty is a function of the initial estimate of the individ-
ual’s belief regarding the number of dishonest players in the
system. Ifk′ ≪ k, then the system would take a long time
to converge to the Nash equilibrium of honest behavior or
might not even converge. If we could provide a numerical
computation of how much penalty is needed for the system
to converge to eventual honest behavior, then we could pro-
vide a bound on the time of convergence for the players of
the game.
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