Interconnect and Wire Engineering

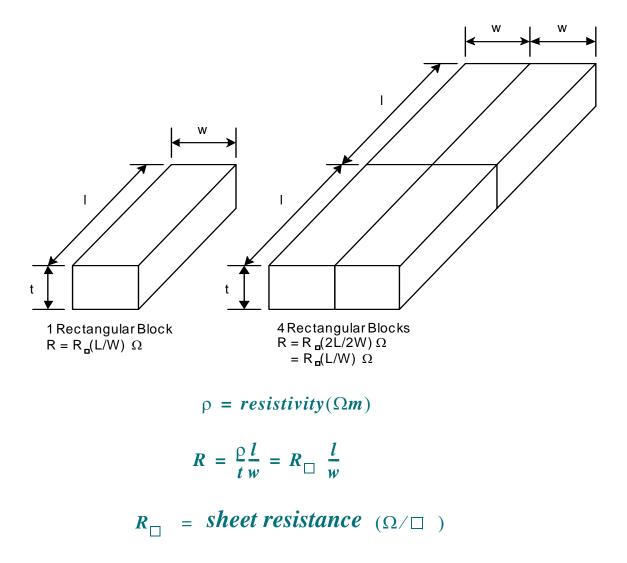
Interconnect

Analysis of interconnect is becoming as important as transistors in modern processes.

Modern processes use 6-10 metal layers Layer stack for 180nm process

Pitch = w + sAspect Ratio = t / wNewer processes have AR ~ 2

Thicker wires as you move towards upper metal layers


Layer	T (nm)	W (nm)	S (nm)	AR	
6	1720	860	860	2.0	
	1000				
5	1600	800	800	2.0	
	1000				
4	1080	540	540	2.0	
	700				
3	700 700	320	320	2.2	
2	700 700	320	320	2.2	
1	700 480	250	250	1.9	
	800				Substrate

Interconnect and Wire Engineering

CMPE 413

Count number of squares and multiply by sheet resistance to get R

Wire Resistance

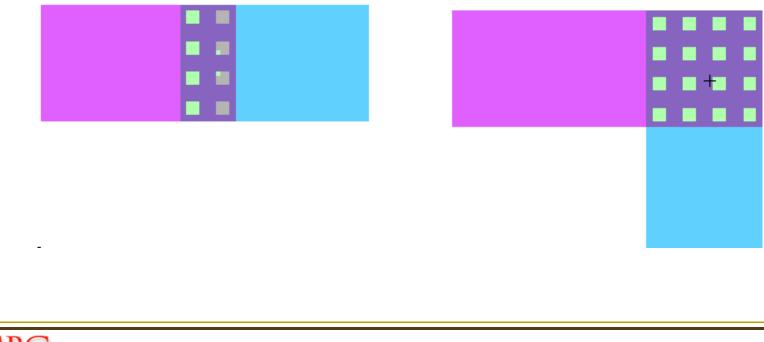
Older processes used aluminum, today's processes use copper

Special barrier layer required to stop copper from diffusing into silicon and destroying transistors

Typical sheet resistance values in 180nm process

Layer	Sheet Resistance (Ω/\Box)				
Diffusion (silicided)	3-10				
Diffusion (unsilicided)	50-200				
Polysilicon (silicided)	3-10				
Polysilicon (unsilicided)	50-400				
Metal1	0.08				
Metal2	0.05				
Metal3	0.05				
Metal4	0.03				
Metal5	0.02				
Metal6	0.02				

Interconnect and Wire Engineering

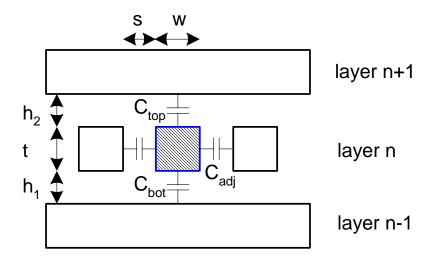

Contact Resistance

Contacts and vias also have about 2-20 Ω of resistance.

Higher resistance than that of metal wires.

Use many contacts to get lower R

As current crowds at the periphery, many small contacts required rather than one huge contact.


Interconnect and Wire Engineering

CMPE 413

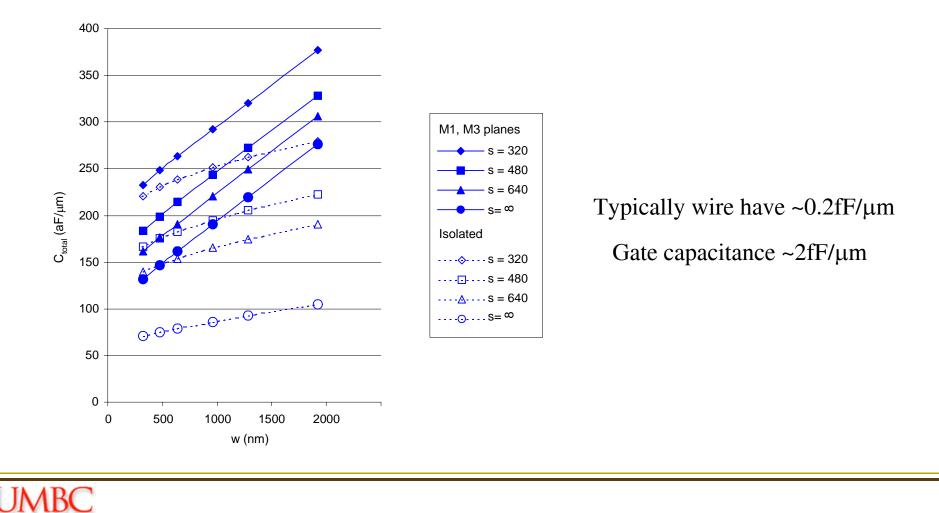
Wire Capacitance

Wire have capacitance per unit length to neighboring layers and layers above and below

 $C_{total} = C_{bottom} + C_{top} + 2C_{adjacent}$

Parallel plate capacitance equation $C = \varepsilon A/d$

- Wires are not truly parallel plate, but obey trends
- Increasing area (W or t) increases capacitance
- Increasing distance (s or h) decreases capacitance


Interconnect and Wire Engineering

Wire Capacitance

Dielectric constant in the previous equation $\varepsilon = k\varepsilon_0$

 $\varepsilon_0 = 8.85 \text{ x } 10^{-14} \text{F/cm}$ and $k = 3.9 \text{ for } \text{SiO}_2$

Newer processes are starting to use low-k dielectric materials to reduce capacitance

Interconnect and Wire Engineering

CMPE 413

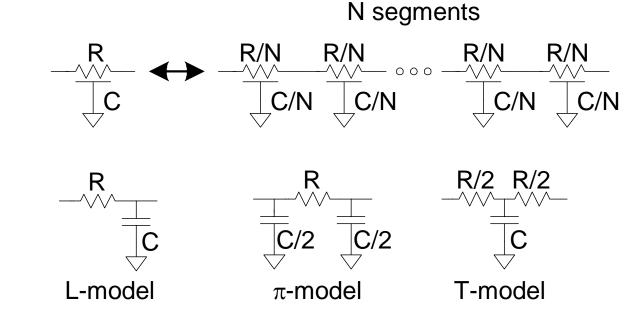
Diffusion and Polysilicon Capacitance

Diffusion capacitance is very high ($\sim 2 fF/\mu m$)

Comparable to gate capacitance Diffusion also has high resistance Avoid using diffusion runners for wires!!

Polysilicon has lower C but higher R

Use for transistor gates Occasionally for very small wires between gates


Interconnect and Wire Engineering

CMPE 413

Wire Delay: Lumped Element Models

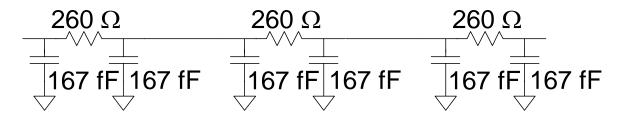
Wires are a distributed system

Approximated using lumped element models

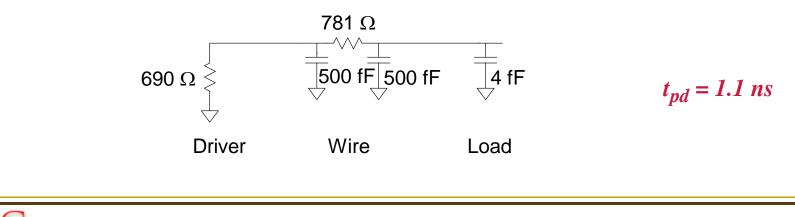
3 segment π -model is accurate to within 3% in simulations

L-model would require about 100 segments to obtain the same accuracy

Use single segment π -model for Elmore delay


Interconnect and Wire Engineering

CMPE 413


Wire Delay: Lumped Element Models

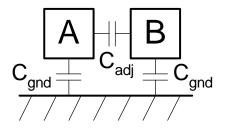
Example: Metal2 wire in 180nm process that is 5 mm long and 0.32 μ m wide Construct a 3 segment π -model

 $R_{\Box} = 0.05\Omega/\Box \implies R = 781\Omega$ and $C_{permicron} = 0.2fF/\mu m \implies C = 1pF$

Estimate delay of 10x inverter driving a 2x inverter at the end of the above wire $R = 2.5k\Omega \times \mu m$ for gates Unit inverter: 0.36 µm for NMOS, 0.72 µm for PMOS

Crosstalk

A capacitor does not like to change its voltage instantaneously

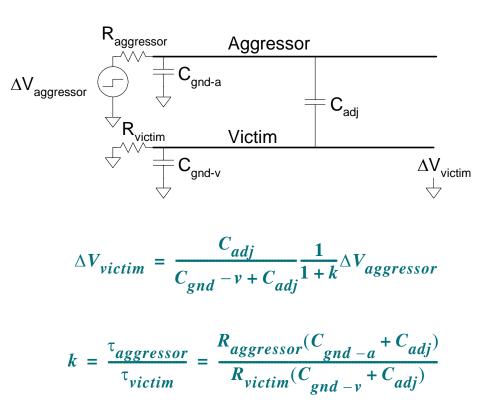

A wire has high capacitance to its neighbor

When neighbor switches from $1 \rightarrow 0$ or $0 \rightarrow 1$ the wire tends to switch too

Called *capacitive coupling* or *crosstalk*

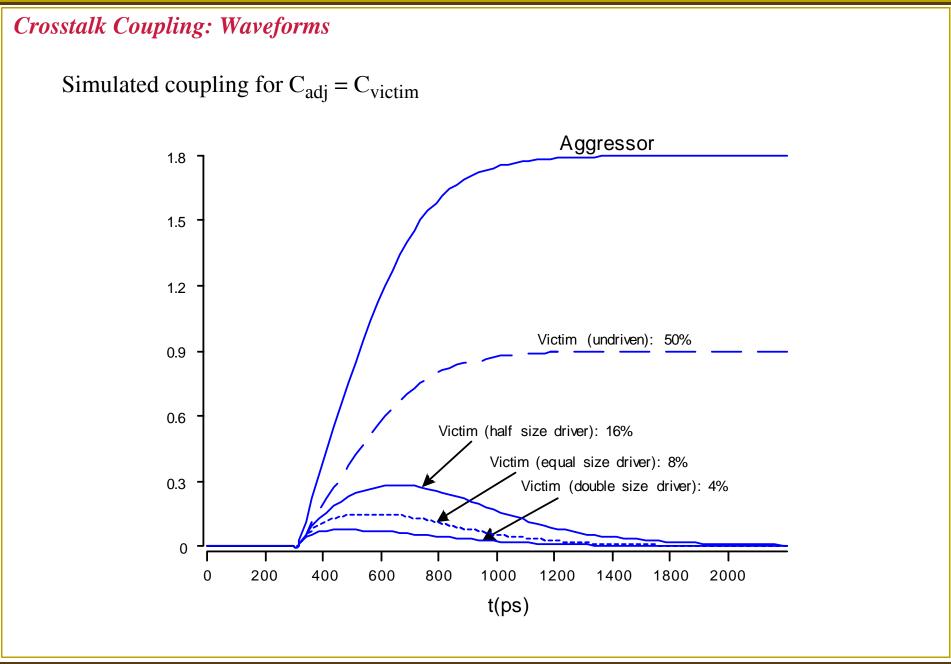
Effects: Noise on non-switching wires and increased delay on switching wires

Assume wires above and below on average are quiet and therefor second terminal of capacitor can be ignored Modeled as $C_{gnd} = C_{top} + C_{bottom}$


Effective C_{adjacent} depends on behavior of neighbors *Miller Effect (Miller Coupling Factor MCF)*

B	DV	$C_{eff(A)}$	MCF
constant	V _{DD}	$C_{gnd} + C_{adjacent}$	1
switching same direction as A	0	C _{gnd}	0
switching opposite direction as A	2V _{DD}	$C_{gnd} + 2C_{adjacent}$	2

Interconnect and Wire Engineering **Principles of VLSI Design CMPE 413 Crosstalk** Crosstalk causes noise on non-switching wires If the victim is floating model as capacitive voltage divider Aggressor $\Delta V_{aggressor}$ $\boldsymbol{C}_{\text{adj}}$ Victim $\Delta V_{victim} = \frac{C_{adj}}{C_{gnd - v} + C_{adj}} \Delta V_{aggressor}$


Crosstalk Noise: Victim

Usually victim is driven by a gate that fights noise Noise depends on relative resistances Victim driver is in linear region, aggressor in saturation If sizes are same, $R_{aggresor} = 2-4 \times R_{victim}$

Interconnect and Wire Engineering

CMPE 413

Crosstalk noise

Noise implications:

If the noise is less than the noise margin nothing happens

Static CMOS logic will eventually settle to correct output even if disturbed by a large noise spike

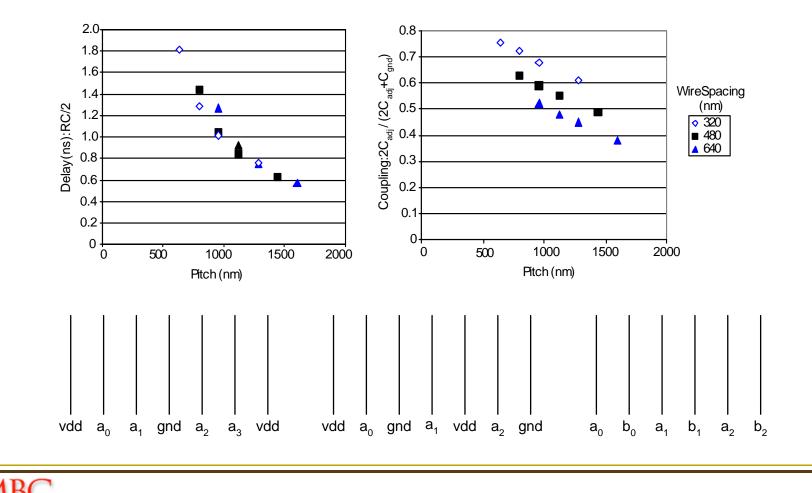
But these glitches cause extra delay

Also causes extra power from false transitions

Dynamic logic (discussed later) will never recover from noise

Memories and other sensitive circuits can also produce wrong answers

Interconnect and Wire Engineering

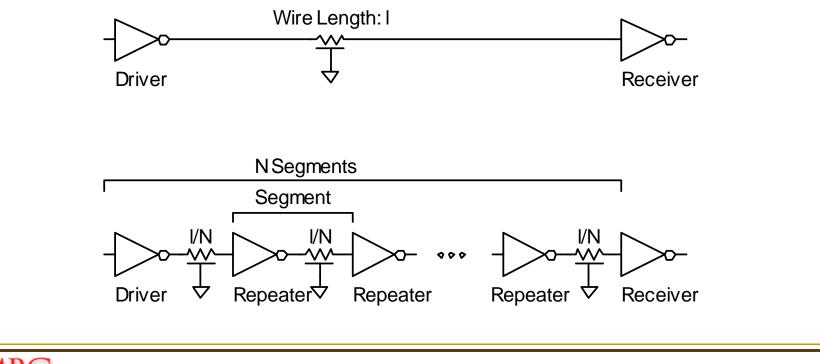

CMPE 413

Wire Engineering

Goal: Achieve delay, area and power specifications with acceptable noise

Degrees of freedom

Width, Spacing, Layer and Shielding



Repeaters

R and C are proportional to *l*

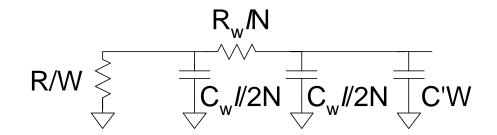
RC delay is proportional to l^2 Unacceptably high for long wires

Break long wires into N shorter segments Drive each segment with an inverter or buffer

Repeaters

How many repeaters should we use?

```
How large should each one be?
```



Wire length *l*

Wire capacitance $C_w * l$, Resistance $R_w * l$

Inverter width W (NMOS = W, PMOS = 2W)

Gate capacitance C`* W, Resistance R / W

Repeaters

Write equation for Elmore Delay Differentiate with respect to W and N Set equal to 0 and solve

Best length of wire between repeaters, neglecting diffusion parasitics

 $\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$

Delay per unit length of a properly repeated wire is

 $\frac{t_{pd}}{l} = (2 + \sqrt{2}) \sqrt{RC'R_wC_w}$

NMOS transistor width to achieve this delay

$$W = \sqrt{\frac{RC_w}{R_wC'}}$$

