Logic Gate Delay

Chip designers need to choose:

- What is the best circuit topology for a function?
- How many stages of logic produce least delay?
- How wide transistors should be?

Logical Effort

Helps make the above decisions. Uses a simple delay model Allows easy hand calculations Compare alternative designs easily

Express delay in process independent terms

$$d = d_{abs} / \tau$$

e.g. $\tau = 12 \text{ ps in } 180 \text{nm}, 40 \text{ ps in } 0.6 \mu\text{m}$

Delay has two components

d = f + p where,

f = Effort Delay (stage effort) = gh
p = Parasitic Delay

Logical Effort

I.

Logic Gate Delay

g logical Effort

- Measures relative ability of gate to deliver current
- 1 for inverter

h electrical effort = C_{out}/C_{in}

- Ratio of output to input capacitance
- Sometimes called fanout

p parasitic delay

- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Again
$$d = f + p = gh + p$$

p:
$$G = 1$$

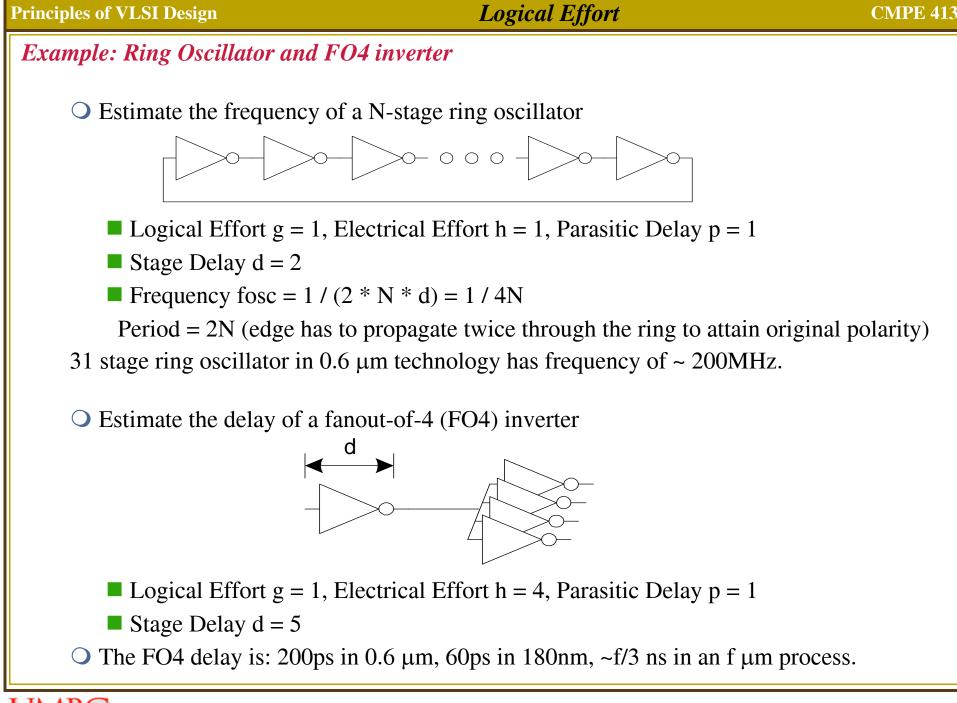
 $G = 1$
 $G = 1$

Logicui Ljjon					
Can be m	It is the ratio of livering the same leasured from dete by counting	e output current elay vs. fanout	<i>nt</i> . plots	ite to the input	capacitance of
$C_{in} = 3$ $g = 3/3$	$\begin{bmatrix} 2 \\ -Y \end{bmatrix} = 4E$ $\begin{bmatrix} 1 \\ g = 4/3 \end{bmatrix}$		$\begin{array}{c} A \\ \hline Y \\ B \\ \hline C_{in} = 3 \\ g = 5/3 \end{array}$		- Y
Gate Type	Number of Inputs				
Gute Type	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate, Mux	2	2	2	2	2
XOR, XNOR		4,4	6,12,6	8,16,16,8	

Principles of VLSI Design

Logical Effort

Parasitic Delay


Count diffusion capacitance on the output assuming contacted diffusions.

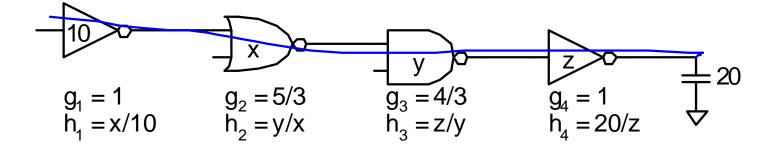
- Inverter: 3 units of diffusion capacitance, parasitic delay is $3RC = \tau$.
- Normalized parasitic p_{inv} is.
- p_{inv} is the ratio of diffusion capacitance to gate capacitance for a particular process. Is considered close to 1 for simplicity

Logical Effort

- More refined parasitic delay estimations can be performed using Elmore delay. Internal diffusion capacitance are considered, delay grows quadratically rather than linearly as estimated by the crude method.
- Parasitic delay for common gates using the crude method

Gate Type	Number of Inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate, Mux	2	4	6	8	2n

AN HONORS UNIVERSITY IN MARYLAN

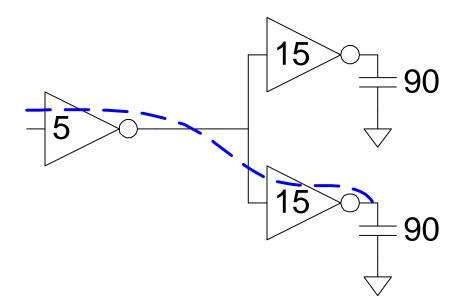

Logical Effort

Multistage Logic Networks

Logical Effort generalizes to multistage networks

- Path Logical Effort: $G = \prod g_i$
- Path Electrical Effort: $H = \frac{C_{outpath}}{C_{inpath}}$

Path Effort: $F = \prod f_i = \prod g_i h_i$



Thus by analogy is F = GH? NO! Due to branching paths.

Logical Effort

CMPE 413

Multistage Logic Networks: Branching Effort

G = 1 H = 90/5 = 18 GH = 18 $h_1 = (15 + 15) / 5 = 6$ $h_2 = 90/15 = 6$ $F = g_1g_2h_1h^2 = 36 = 2GH$

Thus we need to introduce *branching effort*.

CMPE 413

Multistage Delay

O Branching Effort

Accounts for branching between stages in path

$$b = \frac{C_{onpath} + C_{offpath}}{C_{onpath}}$$

$$B = \prod b_i$$

 \bigcirc Path Effort: F = GBH

 \bigcirc Path Effort Delay: $D_F = \sum f_i$

• Path Parasitic Delay: $P = \sum p_i$

 \bigcirc Path Delay: $D = \sum d_i = D_F + P$

Logical Effort

Designing Fast Circuits

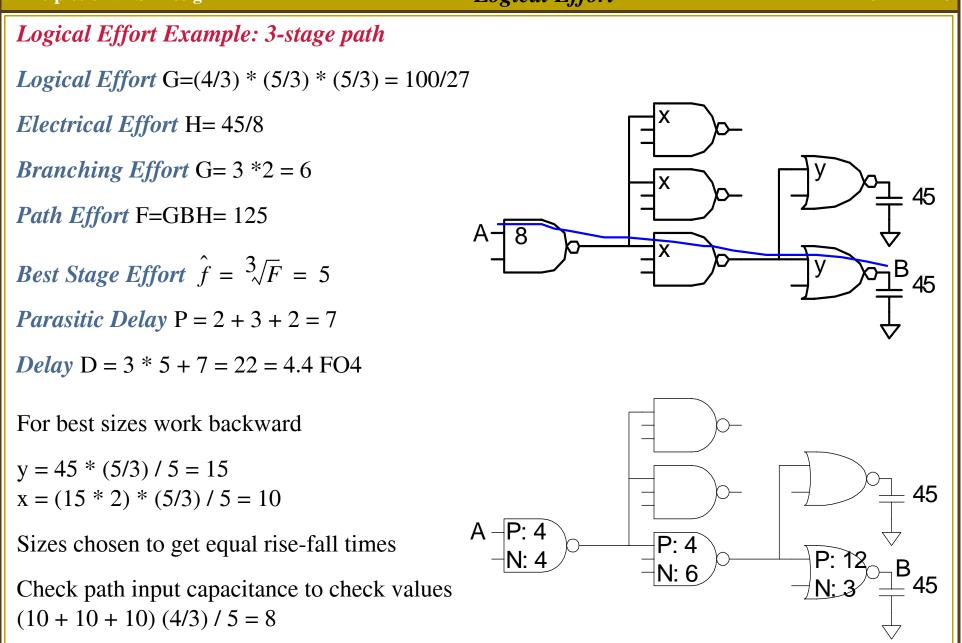
Delay is the smallest when each stage bears the same effort f, with N stages in the path

$$\hat{f} = g_i h_i = F^{1/N}$$

Thus, minimum delay of N stage path is

$$D = NF^{1/N} + P$$

The above equation helps to find fastest possible delay without calculating gate sizes.

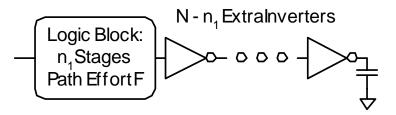

Capacitance transformation used to used to calculate gate widths.

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives

Check work by verifying input capacitance specification is met.

Logical Effort

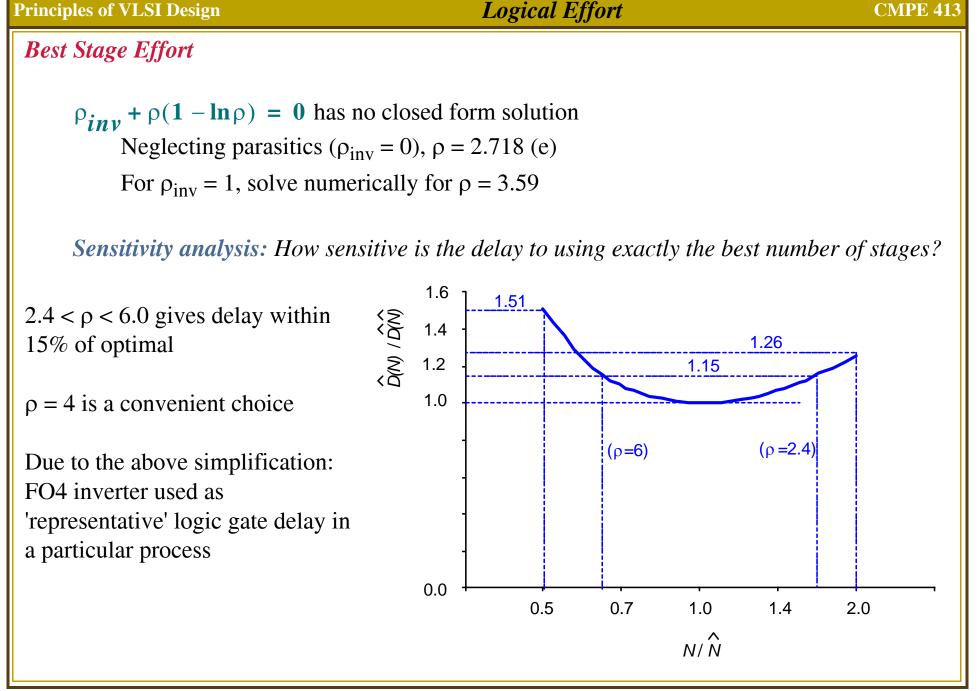


Logical Effort **Principles of VLSI Design CMPE 413 Best Number of Stages** Another important choice is the number of stages in a path Minimum number of stages does not provide best delay in all cases E.g. drive 64-bit datapath with unit inverter InitialDriver $D = NF^{1/N} + P = N(64)^{1/N} + N$ 8 16 +64 + 64 **∔**64 DatapathLoad ± 64 $\stackrel{\frown}{\vdash}$ $\stackrel{\frown}{\vdash}$ Δ \diamond 2 3 N: 1 8 4 15 64 2.8 f: 15.3 D: 65 18 Fastest

Logical Effort

Best Number of Stages

Consider adding inverters at the end of the path? How many produce the best delay?



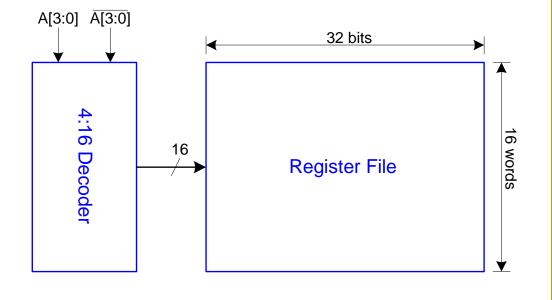
$$D = NF^{1/N} + \sum_{i=1}^{n_1} p_i + (N - n_1)\rho_{inv}$$

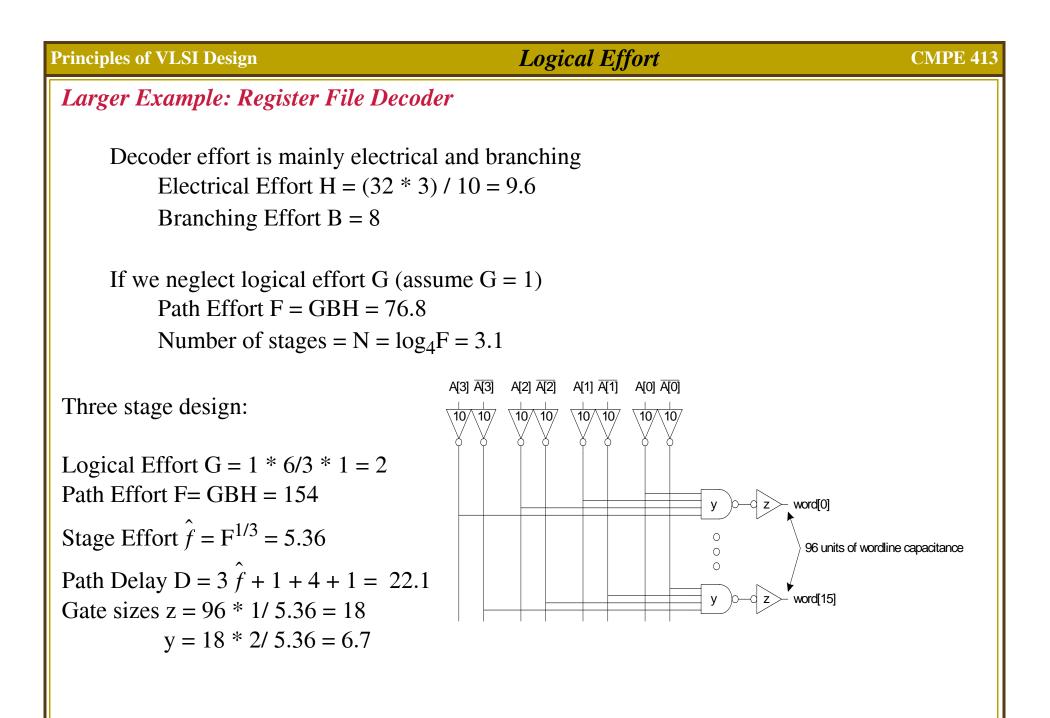
$$\frac{\partial D}{\partial N} = -F^{1/N} \ln F^{1/N} + F^{1/N} + \rho_{inv} = 0$$

Define best stage effort $\rho = F^{1/N}$

$$\rho_{inv} + \rho(1 - \ln \rho) = 0$$

Larger Example: Register File Decoder


Decoder specifications


- 16 word register file
- Each word is 32 bits wide
- Each bit presents a load of 3 unit-sized transistors on the word line
- True and complimentary versions of address bits A[3:0] are available
- Each address input can drive 10 unit-sized transistors.

How many stages to use?

How large should each gate be?

How fast can the decoder operate?

Logical Effort

Larger Example: Register File Decoder

Compare alternatives with a spreadsheet

Design	Ν	G	Р	D
NAND4 - INV	2	2	5	29.8
NAND2 - NOR2	2	20/9	4	30.1
INV - NAND4 - INV	3	2	6	22.1
NAND4 - INV - INV - INV	4	2	7	21.1
NAND2 - NOR2 - INV - INV	4	20/9	6	20.5
NAND2 - INV - NAND2 - INV	4	16/9	6	19.7
INV - NAND2 - INV - NAND2 - INV	5	16/9	7	20.4
NAND2 - INV - NAND2 - INV - INV - INV	6	16/9	8	21.6

rinciples of VLSI Design	Logical Effort	CMPE 4
Logical Effort: Recap of	Definitions	
TERM	STAGE	PATH
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	Cout / Cin	$H = \frac{C_{outpath}}{C_{inpath}}$
branching effort	$b = \frac{C_{onpath} + C_{offpath}}{C_{onpath}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Logical Effort

CMPE 413

Logical Effort: Method Recap

- \bigcirc Compute path effort F = GBH
- \bigcirc Estimate best number of stages $N = log_4 F$
- Sketch path with N stages
- Estimate least delay $D = NF^{1/N} + P$
- Determine best stage effort $\hat{f} = F^{1/N}$
- Find gate sizes using capacitance transformation $\hat{f} = g \frac{C_{out}}{C_{i}}$

Logical Effort Summary

- Provides a mechanism for designing and discussing fast circuits
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delay is ~4
- Path delay is weakly sensitive to stages, sizes
- Using fewer stages doesn't mean faster circuit
- Inverters and NAND2 best for driving large loads (caps)
- BUT REQUIRES **PRACTICE** TO MASTER !!!

Limitations of Logical Effort

- Chicken and Egg problem
 Need path to compute G
 But don't know number of stages without G
- Simplistic Delay Model
 - Neglects input rise time effects and input arrival times Gate-source capacitance approximation
 - Bootstrapping due to gate to drain capacitance coupling
- Ignores secondary effects: velocity saturation, body effect etc
- Does not account for interconnect
 More applicable to datapath circuits with regular layout structure e.g. adders, mults etc Iterations required in designs with significant interconnect delay
- Design for maximum speed only, no information about minimum area/power
- Paths with complex branching are difficult to analyze by hand