## MOS: Metal Oxide Semiconductor

Transistors are built on a Silicon (semiconductor) substrate.

Pure silicon has no free carriers and conducts poorly.

Dopants are added to increase conductivity: extra electrons (n-type) or extra holes (p-type)

MOS structure created by superimposing several layers of conducting, insulating and tran-sistor-forming materials.

Metal gate has been replaced by polysilicon or poly in modern technologies.

There are two types of MOS transistors:
nMOS $-\sqrt{5}$ : Negatively doped silicon, rich in electrons.
$\mathrm{pMOS} \rightarrow \square$ : Positively doped silicon, rich in holes.

CMOS: Both type of transistors are used to construct any gate.

## nMOS and pMOS

Four terminal devices: Source, Gate, Drain, body (substrate, bulk).


## CMOS Inverter Cross-Section

Cadence Layer's for AMI 0.6mm technology


CMOS Cadence Layout
Cadence Layout for the inverter on previous slide


## MOS Transistor Switches

We can treat MOS transistors as simple on-off switches with a source (S), gate (G) (controls the state of the switch) and drain (D).

1 represents high voltage, $\mathrm{V}_{\mathrm{DD}}(5 \mathrm{~V}, 3.3 \mathrm{~V}, 1.8 \mathrm{~V}, 1.2 \mathrm{~V},<=1.0 \mathrm{~V}$ today, .....)
0 represent low voltage - GND or $\mathrm{V}_{\mathrm{SS}}$. ( 0 V for digital circuits)

|  |  | $\mathrm{g}=0$ | $g=1$ |
| :---: | :---: | :---: | :---: |
| nMOS | d | OFF | d |
|  | $g-\downarrow$ |  |  |
|  |  |  |  |
|  |  | S |  |
| pMOS | d | d | d |
|  | $\mathrm{g}-\mathrm{d}$ ¢ | ON | OFF |
|  |  |  |  |
|  | S |  | S |

## Signal Strengths

Signals such as 1 and 0 have strengths, measures ability to sink or source current $\mathrm{V}_{\mathrm{DD}}$ and GND Rails are the strongest 1 and 0

Under the switch abstraction, G has complete control and S and D have no effect.
In reality, the gate can turn the switch on only if a potential difference of at least $V_{t}$ exists between the $G$ and $S$.
We will look at $\mathrm{V}_{\mathrm{t}}$ in detail later on in the course.

Thus signal strengths are related to Vt and therefore p and n transistors produce signals with different strengths

Strong 1: $\mathrm{V}_{\mathrm{DD}}$, Strong 0: GND, Weak $1:\left(\sim \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{t}}\right)$ and Weak $0:\left(\sim \mathrm{GND}+\mathrm{V}_{\mathrm{t}}\right)$.

*** Strong 0*** nMOS


Weak 1


Weak 0
pMOS

*** Strong 1***

## CMOS Inverter



THE CONFIGURATION BELOW FOR A BUFFER IS NOT A GOOD IDEA. WHY?


BAD IDEA

NAND and NOR CMOS Gates



The off-state of a transistor creates a high impedance condition Z at the drain.
No current flows from source to drain. So transistors can be used as switches.


$$
g=1
$$

$$
s \rightarrow 0-d
$$




$$
\begin{aligned}
& \text { Input } \mathrm{g}=1 \text { Output } \\
& 0 \rightarrow \text { strong } 0 \\
& \mathrm{~g}=1 \\
& 1 \longrightarrow \text { degraded } 1 \\
& \begin{aligned}
& \text { Input } \\
& \mathrm{g} \rightarrow 0 \text { Output } \\
& \rightarrow 0-\text { degraded } 0
\end{aligned} \\
& \underset{\rightarrow}{\mathrm{~g}}=0 \text { strong } 1
\end{aligned}
$$

However, as we previously discussed this will produce degraded outputs, if only one transistor is used as a switch.

## Transmission Gates



One pMOS and one nMOS in parallel.
Note that neither transistor is connected to $\mathrm{V}_{\mathrm{DD}}$ or GND.
A and $\overline{\mathrm{A}}$ control the transmission of a signal on In to Out.
Transmission gates act as tristate buffers.





Transmission Gate Application: Select Mux
Transmission Gate


Truth Table for 2-to-1 MUX

| Select | Out |
| :---: | :---: |
| 0 | B |
| 1 | A |

$$
\text { Out }=\mathrm{A} . \mathrm{S}+\mathrm{B} . \overline{\mathrm{S}}
$$

How many transistors are required to implement this using CMOS gates?

D Latch


## D Flip-Flop



If $\overline{C L K}$ is unavailable one extra inverter needed to generate it using CLK

D Flip-Flop Operation



More CMOS Gates


And More CMOS Gates


And More CMOS Gates


