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Abstract. Networked multi-agent systems are comprised of many autonomous yet inter-
dependent agents situated in a virtual social network. Two examples of such systems are
supply chain networks and sensor networks. A common challenge in many networked multi-
agent systems is decentralized team formation among the spatially and logically extended
agents. Even in cooperative multi-agent systems, efficient team formation is made difficult
by the limited local information available to the individual agents. We present a model of
distributed multi-agent team formation in networked multi-agent systems, describe a policy
learning framework for joining teams based on local information, and give empirical results
on improving team formation performance. In particular, we show that local policy learn-
ing from limited information leads to a significant increase in organizational team formation
performance compared to a random policy.

Keywords multi-agent learning, networked multi-agent systems, agent learning and adaptivity,
probabilistic reasoning.

1 Introduction

Distributed team formation is a common challenge in many multi-agent systems. In sensor networks,
collections of sensors, sector managers, and other agents must dynamically decide to work together
to track targets or adapt to environmental changes [4, 12]. In supply networks, manufacturers, sup-
pliers, distributors, wholesalers, and consumers form informal teams in order to efficiently distribute
goods and to adapt to supply and demand [26,23]. The process of distributed team formation in-
volves agents autonomously deciding to cooperate with other agents in order to accomplish joint
tasks.

Several factors compound the challenge of designing agents for efficient distributed team for-
mation. In large agent organizations, the agent-to-agent interactions may be limited by a social
network. The social network may result from a variety of factors, including physical proximity,
communication limitations, limited knowledge of other agents and their capabilities, trust relation-
ships, and organizational structures. Dynamic, real-time task environments, where the agents have
limited information about the structure of future tasks, make the design of effective team joining
strategies difficult. Finally, limited local information as a result of the virtual social network and
the lack of a centralized controller makes it difficult for agents to determine the behaviors of other
agents and to decide which teams to join.



Most of the previous work on agents learning to form teams in multi-agent systems focused on
environments with access to global information and no restrictions arising from the social network.
Kraus et al. described and evaluated several heuristics for coalition formation [15]. These heuristics
involved an agent evaluating all possible coalitions, assuming that the agent could observe all
possible tasks and all other agents. Nair et al. formulated the problem of allocating roles among
existing teams as a communicating decentralized POMDP [16]. Although it is possible to solve
the problem when formulated in this way, it is shown to be NEXP-complete in the case where
the agents pay a penalty for communicating with each other [3]. Therefore, optimal role allocation
in communication-restricted agents with more than a few agents is intractable. This observation
supports our emphasis on the distributed, on-line learning of heuristics for dynamic team formation.
Other previous work has focused on learning to select appropriate coalition partners assuming no
restrictions imposed by the social network [6] and on learning to select an optimal, predefined
coordination method [8].

This paper focuses on the problem of dynamic, distributed team formation in a networked multi-
agent system with a real-time task environment. In particular, we develop and empirically test a
learning framework within which agents attempt to learn effective team initiating and team joining
policies online. The goal is to learn local policies that improve the aggregate performance of the
agent organization, measured as the proportion of successfully completed tasks. We find that it is
possible for agents to learn effective policies from experience and that locally learned policies can
significantly improve organizational performance in a variety of network structures.

Note that we are interested in agents that are self-interested, but not to the point of deliberately
interfering with other agents’ activities. Specifically, the agents in our environment join teams based
solely on the expected utility of doing so. We assume a fixed payoff for successful tasks (and zero
payoff for failed tasks), so these agents can join teams based on the estimated (learned) probability
of that team’s success. We refer to this behavior as locally self-interested.!

2 A Model of Multi-Agent Team Formation

To explore simultaneous learning of team joining policies in a dynamic environment, we have selected
a simple multi-agent system model motivated by previous work on agent team formation [1,10,
15,16]. The model provides a dynamic team formation environment in which agent teams form
spontaneously in a completely decentralized manner and the agents’ decision making is based solely
on local information. In addition, the model allows for potentially very large agent organizations
where the agents are embedded in a social network. The model is only concerned with the dynamic
formation of teams and not with post-formation teamwork mechanisms or protocols, for which there
is a large body of previous work [13,17,20, 25].

In our model, tasks are generated periodically and are globally advertised to the organization.
A task is modeled as a set of required skills that a group of agents must provide over a specified
duration of time, before a specified deadline. These tasks are simple abstractions of real-world tasks

! In contrast with our “locally self-interested” agents, a genuinely cooperative agent might exhibit sacrificial
behavior: for example, it might forgo joining a high-probability team if another agent can fill that role
equally well, and instead join a lower-probability team for which the agent is the only hope of success.
On the other hand, a genuinely malicious agent might exhibit hostile behavior: for example, it might
deliberately join a team knowing that doing so will eliminate any possibility of that team succeeding.
Our framework does not account for such behaviors, which could be interpreted as rational, but would
require a more complex utility model.



such as a coordinated rescue operation in an emergency response domain, a group of sensors tracking
a vehicle in a sensor network domain, or a set of distributor agents in a supply chain domain.

Agents attempt to form teams to accomplish the advertised tasks. The agents in the organization
are embedded in a virtual social network that restricts the set of possible agent teams: specifically,
for an agent to be on a team, the agent must have a social connection (i.e., a shared edge in the social
network) with at least one other agent on the team. Since we are only concerned with the formation
process, tasks are generic in that they only require that a team of agents with the necessary skills
form to accomplish the specific task.

In this model of team formation, the organization consists of N agents, A = {a1,a2,...,an},
where each agent can be considered as a unique node in a social network. The social network is
modeled by an adjacency matrix E, where an element of the adjacency matrix e;; = 1 if there is
an edge between agent a; and a; and e;; = 0 otherwise. The social relationships among the agents
are undirected, or symmetric, so ¢;; = e;;. In the agent organization, each agent is also assigned
a single fixed skill, o; € [1,0], where o is the number of different types of skills that are present
in the organization. In the experiments presented in this paper, skills are assigned to each agent
uniformly at random from the set of potential skills.

During the team formation process, each agent can be in one of three states: UNCOMMITTED,
COMMITTED, or ACTIVE. An agent in the UNCOMMITTED state is available and not assigned to any
task. An agent in the COMMITTED state has selected a task, but the full team to work on the task
has not yet formed. Finally, an agent in the ACTIVE state is a member of a team that has fulfilled all
of the skill requirements for a task and is actively working on that task. Only uncommitted agents
can commit to a new or partially filled task. In the case when multiple uncommitted agents compete
to satisfy a skill in the task, only one of them, selected at random, will become COMMITTED and
the rest will remain UNCOMMITTED. Committed agents cannot decommit from a given task. Upon
task completion, agents in the ACTIVE state return to the UNCOMMITTED state. An agent’s state is
denoted s;.

Tasks are introduced at fixed task introduction intervals, where the length of the interval between
tasks is given by the model parameter u. Tasks are globally advertised (i.e., announced to all agents).
Each task T} has an associated size requirement, |T}|, and a |Tj|-dimensional vector of required
skills, Ry, . The skills required for a given task T}, are chosen uniformly with replacement from [1, o].
Each task is advertised for a finite number of time steps v, ensuring that the resources (i.e., agents)
committed to the tasks are freed if the full requirements of the task cannot be met. That is, if a
task is advertised for more than v time steps without a full team forming, the agents committed
to the task return to the UNCOMMITTED state. Similarly, teams that successfully form to fill the
requirements of a given task are only active for a finite number of time steps a.

Agent Social Networks Since we are primarily interested in large agent organizations where the
control of the agents does not necessarily fall under a single authority, we explicitly model the agent
social network. Real-world constraints such as cognitive limitations, geographical considerations,
and limited communication capabilities make it impossible for an individual agent to know about
or communicate with all other agents. In our team formation model, the agent social network
explicitly restricts the sets of agents that can form teams.

Definition 1 A valid team is a set of agents M = {a;} that induce a connected subgraph of the
agent social network and whose skill set {o;} fulfills the skill requirements for task Ty.

The requirement of a team to induce a connected subgraph of the agent social network means that
for some agent in the team, a; € M, there must exist at least one other agent, a; € M, # j, such



that e;; = 1. An agent is therefore considered to be eligible to commit to a task in two situations:
(1) when no other agents are committed to the task or (2) when at least one neighbor of the agent
is already committed to the task. In essence, this requires that an agent on a team must “know”
at least one other agent on the team.

Previous work on networked multi-agent team formation has demonstrated that the ability of an
organization of agents to effectively form teams depends heavily on the structure of the agent social
network [9]. In particular, networks with short average path length and hub-like structures support
a diverse set of possible teams and, therefore, a large number of task configurations. Given the
dependence of team formation performance on network structure, we explored policies for adapting
the network structure as a means of improving performance in our earlier work [11]. In this paper,
we embed the agents in fixed network structures and focus on the ability of individual agents to
learn effective team joining policies.

Team Formation Policies During each iteration of the model, the agents receive advertisements
about the current tasks in the system. Each agent with s; = UNCOMMITTED considers all currently
advertised tasks for which it is eligible and selects at most one of them. If the selected task has no
other agents committed to it, an agent initiates a new team; otherwise, it joins the existing team.
We refer to an agent’s strategy for selecting teams to initiate as the agent’s team initiation policy.
The strategy for joining existing teams is termed the agent’s team joining policy.

The policies for initiating and joining teams are an important factor in the performance of multi-
agent team formation. There are many possibilities for these policies. One simple policy involves an
agent always trying to commit to a task by randomly selecting from all tasks for which the agent is
eligible. Such a policy, which combines team initiation and team joining, may create unnecessarily
high demand on, or inefficient use of, the resources in the system (e.g., agents may commit to
tasks for which it is impossible for a team to form). Another simple policy, which may place less
burden on the agents, is a policy in which agents commit to tasks with a given probability that
depends in a fixed way on local information, such as the relative percentage of positions filled.
We are interested in designing agents that autonomously learn effective team formation policies to
improve organizational performance. Our framework for learning team joining and team initiating
policies is discussed in Section 3.

In our experiments, we use as a baseline the random policy, which selects uniformly from all of
the tasks for which the agent is eligible, including a virtual wait task. Let E denote the number of
open tasks for which an agent is eligible. An agent using the random policy selects from the eligible
tasks (including the wait task) with probability
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where J; is the act of committing to the ith eligible task. The purpose of the wait task is to prevent
agents from always committing to a team at the first opportunity, since doing so may not necessarily
be the best option.

We also developed several simple hand-coded, rule-based strategies for over-constrained net-
worked team formation environments as a baseline (e.g., prefer to join a task whose team is almost
formed, or always join a team when eligible to do so). Although the random policy is quite simple,
we have found it to outperform the hand-coded strategies that we tried.

P(J;)

Organizational Performance We measure the team formation performance of the agent organization
as the ratio of number of teams successfully formed to the total number of tasks introduced to the



system:
#of teams successfully formed

#of tasks introduced

org. performance = (2)
This measure of performance provides a global measure of the effectiveness of the agent organization
in forming teams to execute the advertised tasks. In the following section, we describe a framework
for individual agents to learn effective team formation policies and discuss the challenges associated
with distributed simultaneous learning.

3 Learning to Initiate and Join Teams

Rather than designing specific team formation policies for agents, mechanisms for the individual
learning of effective team joining and team initiating policies allow the agents and the organization
to deal with variability in the team formation environment, including task structure and network
structure (e.g., node failures). Moreover, in many network structures, the agents have diverse pat-
terns of connectivity with the rest of the organization. It is difficult to specify team joining policies
for all possible positions in a social network: for example, a hub agent with many connections may
need a different policy than a “fringe” agent with only one or two connections. Therefore, learning
to effectively join teams from any position in the network is extremely useful.

In order to capture a realistic team formation environment, agents are forced to make deci-
sions based solely on local information. Any access to global data would require either extensive
communication among agents or a centralized point in the system. Moreover, relying only on local
information reduces the computational burden on the agents.

Some of the key challenges involved in multi-agent learning in a distributed team formation
environment include:

— Decisions based solely on local information: Each agent must make decisions about join-
ing teams, initiating teams, or waiting given only partial information about the state of the
organization. The information is limited by the position of the agent in the social network and
by the dynamic nature of the environment. This means that an agent’s knowledge of the topol-
ogy of the network, skills and states of other agents is limited only to its immediate neighbors.
Additionally, an agent cannot know what tasks will be introduced to the system in the near
future.

— Local policy interference: The policies of two nearby agents (e.g., neighbors or neighbors
of neighbors) can interfere with each other when the agents attempt to select teams to initiate
and join. For example, one agent may learn to join teams only when a specific neighbor is
UNCOMMITTED (hoping that the UNCOMMITTED neighbor will subsequently join the team),
while the neighbor may learn to avoid teams of which the first agent is a member. Moreover,
interference can propagate through the agent organization. We observed this problem to be
common in simultaneous interdependent adaptation.

— Learning to wait: In the dynamic team formation environment, it may be in an agent’s best
interest to delay, rather than committing to any task for which the agent is eligible. For example,
an agent having very few neighbors available (UNCOMMITTED neighbors) could wait until the
other neighbors become UNCOMMITTED, rather than participating in a team that is unlikely
to be formed because of an insufficient number of available agents. However, the reward for
waiting is necessarily delayed, making it difficult to explicitly learn to wait. Additionally, the
value of deciding to wait is dependent upon the actions of an agent’s neighbors (and, indirectly,



on the rest of the agent network). After all, waiting for the busy neighbors may be futile if the
neighbors decline to cooperate.

— Blocking: If agents are strictly greedy and attempt to join as many successful teams as possible,
blocking may increase. Blocking occurs when an agent is in the COMMITTED or ACTIVE state,
preventing teams from forming in that part of the network structure. This phenomenon is
similar to a bottleneck in a flow network. Effectively, it may cause the network to fragment into
separate pieces. It is desirable for agents to learn to prevent or reduce blocking.

— Local performance # global performance: If the agents in the organization attempt to
naively optimize local performance (i.e., join as many successful teams as possible), global
performance is not necessarily optimized. One “greedy” agent can reduce the performance of
all of its neighbors, by making poor task choices or “stealing” skill slots on a specific task,
resulting in lower collective performance. Alternatively, an agent trying to locally optimize
performance may decide only to join teams that are almost a certain team formation success. If
such risk averse behavior becomes common, almost no agent would like to undertake a high-risk
operation of establishing a new team. Ultimately, in this “tragedy of the commons” scenario,
very few teams may form at all, reducing both global and local performance.

— Inhibiting learning: Poor performance in one region of the organization can propagate through
the organization. If an agent in a certain part of the organization learns a poor or selfish policy,
it can inhibit a neighbor’s ability to learn which tasks are good to initiate or join. This can
be a result of teams being co-opted or corrupted by the agent with the poor or selfish policy,
resulting in failure of teams that would otherwise have a high likelihood of success.

Many of these challenges are interdependent, manifesting themselves simultaneously in the dynamic
team formation environment.

Overview of the Decision Making and Learning Process In our learning framework, the agents try
to learn effective team joining and team initiating policies in real time, based on their previous
experiences. The learned policy is then used to make specific team joining and team initiating
decisions based on the current, locally perceived state of the agent’s environment.

During each iteration, the agents receive advertisements of tasks for which they are eligible at
this time. For each of the tasks, an agent estimates the probability of a task’s success p;, which
is defined to be the probability that a full, valid team will be formed before the task’s expiration,
provided that the agent joins this team. The agents learn to estimate probabilities p; by using
classifiers, which determine how favorable the current conditions are. The details of classifying
tasks are described in more detail below.

Once the agent calculates all the probabilities, it considers the option of not committing to any
task because the current conditions are deemed unfavorable. Based on the estimated probabilities
of success of the available tasks p;, the agent computes the expected discounted utility of waiting
for one more iteration and the expected utility of committing to any of the available tasks in this
iteration. Next, the agent chooses one of these two options randomly with probabilities proportional
to the utilities of the two options. The details of calculating the utilities are given below.

If an agent decides to commit to any task, rather than waiting, it selects a task randomly
from the available tasks. The probability of a task being selected is proportional to its probability
of success p;, as determined by an appropriate classifier. Having selected a task and successfully
committing to it, the agent becomes COMMITTED, and will eventually experience the result of its
team formation decision: whether a team formed before the task’s expiration date or the team



formation failed. After receiving the feedback, the agent updates its classifiers and utilities based
on the state of its local environment when the commitment decision was made.

Learning Probabilities of Tasks’ Success Whenever an agent receives a task advertisement, it records
the current state of its environment, including the state of the team for this task (how many and
which slots of the tasks are still unfilled) and the states of its neighbors. Later, when it is known
whether the team formed successfully or failed to form within the time limit, this stored state is
used to create a training instance. The instance is labeled as JOIN or IGNORE, based on the
success or failure of the team, respectively. Subsequently, the learning model is updated using these
training instances to influence future team formation decisions. In our approach, the agent only
learns probabilities of tasks’ success based on the tasks it decided to join. The tasks the agent
decided to ignore are not remembered because it is not known whether they would have been
successful or not.

A training instance includes the following attributes of an agent’s local environment: the states
of each of the neighbors; the skills of each of the neighbors; the number of unfilled slots in the
task; the skills required for the task; and the amount of time that the task has been advertised.
The information about the skills required for a task includes whether each of the Ry, skills is not
required for this task, required but already filled, or required but not filled.

In our learning framework, the agents use two classifiers: one for team initiation and another
for joining existing teams. The decision to use two classifiers was based on the fact that initiating
a team and joining a partially filled team are very different situations. For example, joining a team
that already has most of its skill slots filled should have a greater probability of success than joining
a team with mostly empty skill slots. However, if all agents only join nearly full teams, then overall
organizational performance would suffer, since agents would never initiate new teams.

The knowledge summarized in a classifier may become outdated over time, because the neigh-
boring agents also learn and change their behavior. This creates a need to gradually discard old
experience that does not reflect the current situation. We solved this problem by assigning a weight
to each training instance. Initially, each instance has a weight of 1.0, but at every iteration after-
wards, its weight is decreased by multiplying it by a decay discount factor (. This ensures that the
most recent experiences have the dominating role in the decision-making process.

We used the WEKA library [28] to provide the actual implementation of the classifiers. Ini-
tially, we experimented with a range of classifiers, including support vector machines with kernels
(SMO) [19], decision trees (J48) [21], and Lazy Bayesian Rules (LBR) [29]. We selected Naive
Bayes [5] as our classifier of choice because of its ability to be updated with new learning instances
in real time, its simplicity, and its performance.

Learning to Wait Having obtained the probabilities of each task’s success from the classifiers, an
agent has to decide whether the probabilities are high enough at a moment to merit joining a task,
or if it is better to wait for a more advantageous situation. In our simulation, agents try to learn a
good behavior by using reinforcement learning [22]. They estimate the utility of join or wait in this
iteration by learning a value function Q(sgrr,arr), where sgy, is one of the states describing the
agent’s situation, and ary, is one of the two possible actions: joining an available task and waiting.

We define a set of abstract states that correspond to the expected probability that joining a task
will be successful. If the agent chooses to join some task, then the tasks are selected at random,
proportionally to their estimated probability of success, p;. Therefore, it is possible to compute the
expected probability of success of a randomly selected task:
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The expected probability Ep determines the agent’s state, which we refer to as sgy. The potential
range of values of Ep [0,1] is divided into ngy intervals, where ngy is a parameter set by the

designer:
1 1 2 -1
[o, ]( , ](L ,1} (1)
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The value function Q(srr,ary) is updated when the result of each team joining attempt is
known. For a decision to join that was made at time ¢ in state s%; (dependent on the value of E,),
an appropriate reward rgy, is assigned (1.0 for a team that successfully formed, and 0.0 for a team
that failed) to the state sh :

Q (s, join) — Q(s% ., join) + arr(rrr — Q(s% ., join)) (5)

where apry, is a learning rate set by the designer.
Additionally, if the agent was waiting for j iterations prior to the joining decision, the states

at iteration ¢ — 1, ¢t — 2, ..., t — j are modified with reward rrr, discounted respectively with the
discount factors ygr,, ﬁu, ce V%L:
Q(sh  wait) — Q(s'y), wait) + arL (Ve rrr — Qs s wait)) (6)

Idleness Limit During a simulation, the agents may perceive the utility of joining as very low,
especially during the initial iterations of the simulation, when the initial utility values promote
waiting rather than joining. This can happen, however, during any time, after a long series of
team joining failures. Because of this, affected agents would not join any teams, would gather no
further experience, and a vicious cycle of inexperience would ensue. To avoid this form of “learned
helplessness,” agents always switch to using the random policy after periods of inactivity. We denote
the length of this period of inactivity as the idleness limit. If an agent exceeds its idleness limit
(i.e., it does not attempt to join a team for a specified amount of time), it is forced to select a task
to join at random for that time step.

Filtering Negative Instances Since we focus on heavily loaded task environments, most of the agents
see far more team failures than successes. If this is not taken into account, the perceived task success
probability and joining utilities may drop. As a result, the agents will quickly stop joining any teams
(unless forced by the idleness limit) and the performance will degrade below that of the random
policy. In order to avoid this difficulty, we use filtering, or sampling, of negative training instances.
In our learning framework, negative training instances are filtered if the ratio of positive training
instances to negative training instances is too low. Specifically, a negative training instance will be
kept with probability psc., where

(7)

of positive instances
pacczmin<1.0,2><r><# P A )

#of all instances

The ratio r (0 < r < 1) is a parameter that determines the acceptance rate of negative instances.



4 Results

The goal of our experiments was to determine if it is possible for agents to learn effective team
joining and team initiating policies. We also wished to evaluate the ability of the agents to learn
regardless of the topology of the agent social network. That is, the goal was to develop and test
a learning framework for an agent embedded in an arbitrary network structure. Therefore, we
tested our approach on a variety of commonly used and realistic network structures: regular graphs
(lattices), and small-world networks [27], random graphs [7], and scale-free graphs [2].

Ezxperimental Design In order to evaluate our learning framework, we ran simulations of the team
formation model with the agents embedded in various social network structures. The primary metric
is global performance: that is, the percentage of advertised tasks that are completed successfully.
All of our experiments were in agent societies that consisted of 100 agents connected in a social
network with approximately 400 edges. A similar number of edges (network density) ensured that
on average, nodes in each of the networks had a comparable number of neighbors with whom they
could form teams.

We generated 30 such network structures from each of the four network classes: lattice, small-
world, random, and scale-free. All inconsistent network structures and network structures whose
number of edges did not fall into the range [390,410] were rejected as deviating too much from the
average network density, and their generation was repeated until we obtained a structure meeting
these criteria.

The regular graphs we generated were wrapped two-dimensional lattices of size 10x 10 (effectively
forming a torus) with a coordination number of 2 (i.e., with each node connected to its two nearest
neighbors in each direction). These graphs have 100 nodes and 400 edges, and were used to determine
the standard size and network density of the other generated graphs.

Small-world networks followed the model presented by Watts and Strogatz [27], and were built
by starting with a lattice, then randomly rewiring each edge with a probability of 0.1.

Random graphs were generated by adding an edge e; ; between agents ¢ and j randomly with
probability of 0.0808. (The expected number of edges for a random graph with this edge probability
and 100 nodes is approximately 400.)

Scale-free graphs were generated by first adding two connected nodes, and then the rest of the
nodes were added iteratively following preferential attachment described by Albert and Barabési [2].
(The nodes tend to connect to nodes that are already highly connected, i.e., that have high degree.)
In this model, the probability that a new node ¢ will be connected to an already existing node j is
Di,;, where d; denotes the current degree of node j:

d_ (&
Pij = Mo <+> (8)
k=1 Ak

In our networks, we used mo = 2.7 and ¢ = 0.88; with 100 vertices, these parameter settings yield
graphs with approximately 400 edges.

We ran a series of simulations on each of the network structures with the agents using the random
policy to initiate and join teams, and a second series with the agents learning team formation
policies in real time. The team formation model was parameterized to provide a heavily loaded
task environment. Each simulation was run for 20,000 time steps. In all simulations, ¢ = 10 and
|T%| = 10. A new task was introduced to the system every time step (u = 1) and each task was



advertised for up to 10 time steps (y = 10). Once a task began execution, it executed for 10 time
steps (o = 10). Given this environment, an agent could receive at most ten simultaneous task
advertisements. An environment with shorter task lengths would decrease the workload for the
agents, and consequently make the problem easier. (Under a sufficiently light task load, agents
simply learn to join as often as possible, given the eligibility constraints.) Conversely, longer task
lengths would overload the network significantly.

The initial utility values returned by the value functions (see Section 3) were set to 1.0 for
waiting and to 0.1 for joining any available task (Q(sgrr,wait) = 1.0 and Q(sgr,join) = 0.1).
Other reinforcement learning parameters were ngr = 10, agr = 0.01, and ygr = 0.975. The
idleness limit was set to 100; i.e., learning agents were forced to join some team whenever they went
100 time steps without attempting to join any teams. The decay discount factor was 8 = 0.9995
and the negative instances were filtered with ratio » = 0.1 (see Equation 7).

These parameters were determined experimentally. A higher idleness limit led to slow learning,
because initially some agents refused to join any teams, although they eventually managed to
improve their behavior. A lower idleness limit only slightly influenced learning negatively (agents
usually were eager to join teams after the initial period), unless the limit was set extremely low. In
such cases, agents were forced to join almost all the time, and the system’s performance resembled
the performance of the random team joining policy. Interestingly, agents were usually forced to join
because of the idleness limit only during the very beginning of the simulation, when they had no
experience. After the initial period, forced joins were almost non-existent, and did not significantly
influence the policy learned by the agents.

Similarly, setting the decay discount factor to a lower value caused agents to ignore their past
experiences too quickly, and agents never managed to learn a good policy. On the other hand,
further increasing the decay discount factor caused a decrease in performance after some time,
when the old experiences—which were no longer relevant to the current situation—were still taken
into significant consideration by the classifier.

Comparison of Strategies We found that agents were able to learn effective team formation policies
(compared to the random policy), regardless of the underlying social network structure. In all of
the networks, the learned policies significantly outperformed the random policy. The average results
over all networks are presented in Figure 1. The error bars show the 95% confidence interval for
each measurement.

The agents consistently improved their performance over the first 3000 time steps. This gain
in performance can be explained by the agents’ use of accumulated experience, and the fact that
initially not many agents were deciding to join any teams, or they were choosing to start teams
different than their neighbors. The first observation (initially no team formation) was partially
caused by the fact that the initial utility of waiting was set very high. (Setting it to a lower value
prevented agents from properly learning to wait and not steal positions on tasks away from other
agents with higher probabilities of success on those tasks.)

We also found that the improved performance of the learned strategy did not significantly
increase the average number of team joining attempts over that of the random policy. This result
suggests that the learned strategies were also able to effectively decide when to wait, and were able
to choose tasks that were more likely to succeed when they did join teams. This phenomenon can
be seen in Figure 2 and Figure 4.

Discussion The results of our simulation show that the agent community ultimately learned how
to coordinate their team formation decisions. We observed that the agents sometimes effectively
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Fig. 1. Average performance.

“partition” the network into areas, depending on the current conditions, so that agents from one
area do not interfere with forming teams from another area. The agents also developed different
joining policies that were sensitive to their varying positions in the network. The last observation is
consistent with intuition because an agent who has multiple neighbors (a hub node in the network)
should have a different team joining policy than a satellite node. A hub node has much wider
selection of tasks and far greater possibility of blocking the network (a possible bottleneck). A
satellite node, on the other hand, depends very much on the strategies of its neighbors (e.g., it
makes little sense for such a node to start a new team, if its neighbors has not demonstrated in
the past that they are willing to join such a team). Moreover, the fact that the number of joining
attempts did not significantly increase despite the improved performance indicates that agents
learned to wait more efficiently. That is, agents can perceive when the conditions are unfavorable,
and allow other agents with a higher probability of success to join a task.

Although the learned strategy always achieved higher performance than the random strategy,
the performance for both strategies also varied depending on the underlying network structure.
The values for organizational performance qualitatively matched previously reported results [9, 10].
Figure 3 shows the average performance of the learned strategies compared to the random policy
for each of the network structures. For all network structures, the agents that learned were able to
increase organizational performance, demonstrating that it is possible to learn, independent of the
social network topology.

Our approach only compares the learned strategy to the random strategy, which is a useful
lower baseline. The task load in the environment was intentionally very heavy, and agents were
not capable of executing all the tasks given the network restrictions, lack of global knowledge,
and skill diversity. However, we selected the new task introduction rate, task size, advertisement
and execution times so that the upper theoretical performance limit would be 1.0 in a society
represented by a fully connected graph (effectively no network restriction) and with only one skill
existing in the society (all agents are identical). Additionally, we tried to estimate experimentally
the upper bound in an environment where there is no network restriction, agents have access to
global information, and they have diverse skills (10 skills; o = 10). The best result we obtained
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Fig. 3. Average organizational performance for each of the four network structures.

in such an environment using a greedy approach was 0.55. Unfortunately, there is no easy way to
estimate the exact theoretical upper limit of performance for the parameters we used.

The main criterion we measured was the performance of the whole organization, defined earlier
as the ratio of tasks executed (equivalent to number of teams successfully formed) to the number
of all tasks introduced to the system.

An alternative criterion we had considered was the local efficiency of agents, which is defined:

# of teams successfully formed

9)

efficiency =
Y # of task commitments

Local efficiency reflects the strain on resources put by the joining policy. Low efficiency indicates
that agents may waste their efforts by trying to join teams that will not be successful. It should also
be stressed that high efficiency does not necessarily correspond to high performance. It is possible
to maintain high efficiency by taking few risks, and only joining tasks with a high probability of
success. Such a strategy, however, will lead to a situation where agents rarely join tasks unless
forced to do so, which would impact organizational performance adversely.

s 10 5
‘Time (in thousands of iterations)



Joining attempts Joining attempts Joining attempts Joining attempts
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5 Motivational Application Domains

The model for team formation presented above and our results show that it is possible to learn
efficient strategies in a distributed, networked multi-agent system. The ideas presented here can be
of practical importance, if further advanced and expanded. Mechanisms for team formation and
protocols for efficient and effective teamwork are required by many different types of multi-agent
systems. As agent systems are increasingly deployed in large-scale environments, the impact of agent
interactions will grow. It will become necessary to understand, engineer, and control the behavior
of agents and agent organizations, preferably promoting self-organization and learning. We briefly
present two domains that motivate the need for understanding patterns of agent interactions.

Disaster and Emergency Response Disaster and emergency response has been identified as a chal-
lenging and important research application for multi-agent systems. Simulated emergency-response
environments have been created for use in multi-agent systems research [24, 14, 18]. In multi-agent
disaster response, there can be many agents with many different skills, such as fire brigades, am-
bulance crews, police officers, civilian volunteers, and even military personnel.

One disaster response scenario requires decentralized coordination (or coordination with a local
dispatcher) among the agents in the environment. When these agents must coordinate to respond to
disasters, the relations among the agents play an essential role. The agents must know about, and
be able to communicate with other agents in the environment. Relationships between agents could
also be built on other factors (e.g., trust or quality of historical support). An additional dimension
of complexity is added when the dynamics of emergencies are considered. It is possible to imagine
scenarios in which several emergencies happen simultaneously, and agents in local regions of the
environment become busy. If the network structure of the first responders facilitates it, agents from
other regions of the environment could assist in areas of high demand. Clearly, in this setting, the
interconnections among the different agents and the different types of agents will have an impact
on the effectiveness of the agent organizations to respond to emergencies.

Sensor Networks Sensor networks are rapidly becoming an important area of research for the
multi-agent systems community. Applications of sensor networks include environmental monitoring,
structural modeling, disaster management, health care, and manufacturing [4]. Sensor networks can
be either wired or wireless. Wireless sensor networks present several unique challenges, including
network connectivity among sensors (i.e., agents) situated in some physical space, which largely
determines the connectivity of a sensor network.
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Some sensor networks are comprised of homogeneous agents, but more realistic environments
are made up of heterogeneous agents. Many different types of agents can be included in sensor
networks, including sector managers, data collectors, data routers, and end point sensors. In these
situations, the role that an agent plays and the interconnectivity of the agents is important for
the overall efficiency of the network. An ability to learn the effects of interconnectivity by the
agents themselves will be essential to designing autonomously operating networks, and ensuring
the effectiveness of multi-agent sensor networks.

6 Future Work and Conclusions

We have demonstrated that agents can learn efficient and effective policies for joining and initiating
teams in a real-time, heavily loaded task environment. Additionally, our learning framework allows
the agents to significantly improve their organizational performance in a wide variety of network
structures.

In the future, we plan to further investigate the use of various machine learning techniques in
our learning framework. In particular, we are exploring the use of ensemble techniques for online
learning, as well as mechanisms for learning from imbalanced data sets. It would be useful for the
designers of agents for large-scale multi-agent systems to understand the trade-offs among differ-
ent learning techniques for team formation and the impact of these techniques on organizational
performance and individual agent policies. We also plan to conduct a more in-depth study of the
policies that agents learn, with a particular focus on comparing the learned strategies for various
social network structures and for different positions within these structures.

As discussed earlier, the current model assumes that all agents are behaving in a locally self-
interested manner. An environment that included genuinely cooperative or genuinely malicious
agents would require different learning methods. In such an environment, it could be useful for the
agents to incorporate notions of trust and reputation when deciding which agents to work with.
The task model could also be extended to incorporate richer task payoff models (e.g., unequal
distribution of profits to agents depending on role or performance).
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