BY NAOMI AVIGDOR

v ' ® :
a n l n . - ne of the classic prob-
lems in real-time system
_ design is the case of pri-
ority inversion, where a

low priority task can ac-

p . tually block the execution of a high pri-
N ority task. How you handle this situa-
: tion will depend on your system design

and operating system. One thing is cer-
tain, however—you will have to address
the problem if you work on real-time
systems. I'll be using the pSOS + real-

o o o
time operating system for the purposes
‘ N of discussion, but the solution I'll pro-
4 : pose is not limited to any particular op-

erating system.

To get our bearings on the problem,
let’s assume that our system has only g
three tasks: HighTask, MedTask, and)
LowTask. These tasks have priorities 4}
high, medium, and low, respectively. !
HighTask and LowTask share a sema-

- phore. MedTask does not need access to
that semaphore.

There are two cases to consider. In
the first case, LowTask is running and |
gets the semaphore. While LowTask is I
holding the semaphore, HighTask be-
comes ready and needs the same sema-
phore. At this point, HighTask, which ’
has a higher priority than LowTask, is
blocked, waiting for LowTask to finish
using the semaphore. In this case, a low
priority task is blocking a higher prior-
ity task. This case is acceptable because
of the shared resource (the semaphore).

At this point, let us consider our sec-
ond case. LowTask is once again run-
ning and gets the semaphore. While
LowTask is holding the semaphore,
HighTask becomes ready and needs the
same semaphore. Now, HighTask is
blocked, waiting for LowTask to finish
using the semaphore. In this scenario, |
however, MedTask becomes ready and
pre-empts LowTask. MedTask, which |
does not need the shared semaphore, is

LDISOULIID FOUDN

T e

/_

Let LowTask run
at the priority of
HighTask while it
is holding a
resource shared
with HighTask,
just in case
HighTask needs it.

running and blocking Low Task, which
is in turn blocking HighTask (by hold-
ing the shared semaphore). This condi-
tion is known as the classical priority
inversion probleim.

A correct solution to this problem is
one that would not allow MedTask to
preempt LowTask, if LowTask is hold-
ing a semaphore that might be needed
by a higher priority task than MedTask.
A correct solution would be to let Low-
Task run at the priority of HighTask
while it is holding a resource shared
with HighTask, just in case HighTask
may need it while LowTask is holding it.

FINDING A SOLUTION

ince pSOS+ does not assign
S priorities to semaphores, I pro-

pose the following solution to the -

classical priority inversion problem:

B Create a queue with a single mes-
sage. This message represents the avail-
ability of the semaphore. When the
queue is empty then the semaphore is
not available, and vice versa.

B Create that queue with the 0_PRIOR

flag. The highest priority task waiting
for the queue message (semaphore) will
get it when it becomes available.

m Use one of the 16-byte message areas
of the queue message as the keeper of
the highest priority level of any task
needing that semaphore. .

B When each task needing' the sema-
phore is started, or at any other conve-
nient time, the task requests the sema-
phore (q_receive) and examines the
highest priority level inside the sema-
phore message. If it is lower than the
task’s own priority, update the value to
the new higher priority. If the task prior-
ity is lower than the one in the message,
leaveit alone. Put the message back into

the queue (q_send).

m When a task needs the semaphore, it
calls t_mode to disable preemption. If
the task is the ready task, pSOS + will
continue torun it, even if there are high-
er priority tasks ready as well.

B Thetask calls g_receive on the sema-
phore message. Then, when the task
gets the semaphore, it calls t_setpri
with the Taskld=self=0, NewPriority=Va-
lueFromSemaphoreMessage. Now the task
runs at the semaphore priority level but
is still not preemptable.

B The task calls t_mode to enable pre-
emption to allow the task to be preemp-
table by higher priority tasks. This is
acceptable because no higher priority

MARCH 1994 EMBEDDED SYSTEMS PROGRAMMING 45

Handling
Inverted
Properties

task needs the semaphore. At this point,
the task that holds the semaphore can-
not be blocked by a task with a lower
priority than the highest priority sema-
phore customers, as described in the
second case.

m When the task completgs the sema-
phore use, it calls t_mode to disable pre-
emption again, and returns the sema-
phore(g_send). The task then updates
the task priority to normal operation(t-
_setpri) and t_mode again to enable
preemption.

The call to t_mode in the final step may
or may not be necessary, depending on
the scheduling algorithm used in the
particular system. The call may be

needed to guarantee the lowering of the
task priority immediately following the
release of the semaphore.

Another solution would be to pro-
ceed as in the first approach, but instead
of putting the highest priority level in a
queue message, put it in a well-known
global place. An example would be an
interrupt vector spaceon a 68xxx family
processor. With this solution, there is no
need to replace sm_v and sm_p with
gcalls. This solution will execute
somewhat faster. Both approaches com-
pletely eliminate the priority inversion
problem. \ :

EVALUATING THE SOLUTIONS
he first question to come to
I many engineers’ minds is the is-
sue of execution time: how
much of a penalty are we paying for
these approaches? These solutions do
add some microseconds to the execution
time for each semaphore request and
release; q_receive takes longer than
sm_p, g_send takes longer than sm_vand
the two calls for t_setpri, and two or
four calls for t_mode.

Infroducing CheckMate II"

Runs Your Target Fast,
So You Make Your
Market Win(byv First.

At 25 MHz, the CheckMate H™ emulator
is the fastest full-featured system for the
80C186 and 80C188 families. With all the
features ever wanted in an emulator, it fits
between two fingers. And at $7,000, each
design team member can have one - elimin-
ating the emulator as the Jab bottleneck.

Whether using Paradigm/DEBUG™ or reducing download time to seconds, the
CheckMate [I™ emulator is the most efficient. Plus, CheckMate Systems™ offers
superior customer support. Be first to your market window. Call us at
206-869-7211 or fax your business card to 206-861-3647.

ﬁ CheckMate Systems™

CheckMate Systems, P.0. Box 3361, 15225 N.E. 80th Ave.,Redmond, Washington 28052
Europe: UK 44-0272-860400 Germany 49-08131-25083 France (33) 1-3054-2222

The task that holds

the semaphore

cannot be blocked

by a task with a

lower priority than

the highest priority
semaphore customers.

Another issue to consider is the dy-
namic elevation of semaphore holder
priority. Assume that the priorities of all
the tasks needing the semaphore are 10,
20, 30, or 40. Every task that gets the
semaphore calls t_setprior to 40. If at
some later time the highest priority task
(with priority = 40) does not need the
semaphore ever again, the ceiling on the
semaphore priority is not dynamically
lowered. It is, however, dynamically ele-

We Also Support
The Intel” 80C 196 Family
and The NEC " V25,

CIRCLE # 23 ON READER SERVICE CARD

46 EMBEDDED SYSTEMS PROGRAMMING MARCH 1994

L

Handling
Inverted
Properties

vated. (See the fourth step outlined
previously.)

If the highest priority task ever need-
ing the semaphore is 40, but at a certain

- point in time, nobody is waiting for the

semaphore, why should the semaphore
holder’s priority be elevated? It should
only be elevated when a higher priority
task actually needs the semaphore, and
only to the level of the “current highest”
priority waiting task, not to the “ever
highest” priority waiting task. This situ-
ation can, of course, be resolved only
inside the sm_p call inside the kernel be-
cause only the kernel has a global view
of the system.

WHAT ABOUT THE KERNEL?

ome developers would hold that
S resolving such difficulties should

be the operating system’s job.
Others would place that responsibility
in the hands of the application develop-
er. The question can be stated simply:
shéuld the priority inversion problem be
resolved at the task level or at the kernel
level?

This issue can be resolved at the ker-
nel level, and there are commercially
available kernels that do just that. If you
believe the kernel is in the proper place,
the system designer need not consider
the priority inversion problem at all.
Sounds like a free lunch, doesn’t it?
Only the cost of the “free lunch” is over-
head (CPU time) at every task switch
across the entire system. Even if you
have a system with no priority inversion
problems, the system bears the over-
head anyway because the solution to the
problem is at the kernel level.

And what is the cost if a kernel (such
as pSOS+) does not take care of the
priority inversion problem? The cost is
only to the parties involved in the prob-

lem, not to all tasks in that system, or for
that matter, not to all tasks in any sys-
tem that has a pSOS+ kernel. So .
where should the priority inversion
problem be solved? 1\/{y experience
leads me to believe that most real-time
systems are not affected by the priority
inversion problem. The few systems
that do have the problem (which, as
stated, is called “classical” because it is
a valid, well-known problem), should
solve the problem outside of the kernel,
to minimize the penalty to the majority
of other real-time systems using the
same kernel.

email: avigdw@ 2s. ymbe .edu

TooOLS FOR THE REAL-TIME ARTISAN

Artisans use the finest tools and techniques. With the ObjecTime toolset, you can construct visual, executable
models of real-time systems and software for early validation of requirements, architecture, and design.

The Real-Time Object-Oriented Modeling method of Selic, Gullekson, and Ward guides you through
an iterative development process emphasizing rapid prototypes and reusable components.

The gap between design and high-performance implementation is eliminated by the
generation of complete, production-quality code directly from design models

for VRTX, pSOS+, VxWorks, HP-RT, HP-UX, AIX, and Seolaris. .

Our tools and techniques help you build better products
in shorter timeframes. Please call us for more
information, or visit us at the Embedded

Systems Conference in Boston,
Booth 123.

% OBIECTIME{“

ObjecTime Limited

340 March Road, Suite 200
Kanata, Ontario, Canada K2K 2E4

1-800-567-TIME

Real-Time Object-Oriented Modeling
is published by John Wiley & Sons.

All trademarks are property of their respective holders.

48 EMBEDDED SYSTEMS PROGRAMMING MARCH 1994

